UM2N.loader package

Submodules

UM2N.loader.cluster_utils module

get_neighbors(source_mask, edge_idx)[source]

Get the neighbors of the source nodes Args:

data: the data object source_mask: a mask of the source nodes edge_idx: the edge index

return:

nei_mask: a mask of the neighbors

calc_dist(coords, node_idx, neighbors_mask)[source]

Calculate the distance between the node and its neighbors Args:

coords: the coordinates of the nodes node_idx: the index of the node neighbors_mask: a mask of the neighbors

return:

dist: the distance between the node and its neighbors

sampler(num_nodes, coords, edge_idx, node_idx, r=0.25, N=100)[source]

For a single node, sample N neighbours within radius r. return the indices of the neighbours

get_new_edges(num_nodes, coords, edge_idx, r=0.35, M=None, dist_weight=False, add_nei=False)[source]

Get the new edges for the graph. A useful knowledge for setting r and M: when on 15x15 dataset, r=0.35, M=25. Args:

data: the data object r: the radius of the cluster

get_neighbors_v0(data, source_mask, edge_idx)[source]

Get the neighbors of the source nodes Args:

data: the data object, a sampler draws form the MeshDataset source_mask: a mask of the source nodes edge_idx: the edge index

return:

nei_mask: a mask of the neighbors

UM2N.loader.data_transform module

arg_parse()[source]
add_edges(file_path, r, M, dist_weight, add_nei)[source]

Add extra edges to the file 1. Read the file

1.1 get num_nodes 1.2 get x 1.3 get original edge_index 1.4 get

  1. Add extra edges

  2. Save the file

process_subset(file_path, r, M, dist_weight, add_nei)[source]

UM2N.loader.dataset module

class AggreateDataset(datasets)[source]

Bases: Dataset

Aggregate multiple datasets into a single dataset.

Attributes:

datasets (list): List of datasets. datasets_len (list): Length of each dataset in datasets.

class MeshDataset(file_dir, transform=None, target_transform=None, x_feature=['coord', 'bd_mask', 'bd_left_mask', 'bd_right_mask', 'bd_down_mask', 'bd_up_mask'], mesh_feature=['coord', 'u'], conv_feature=['conv_uh'], conv_feature_fix=['conv_uh_fix'], load_analytical=False, load_jacobian=False, use_cluster=False, use_run_time_cluster=False, r=0.35, M=25, dist_weight=False, add_nei=True)[source]

Bases: Dataset

Dataset for mesh-based data.

Attributes:

x_feature (list): List of feature names for node features. mesh_feature (list): List of feature names for mesh features. conv_feature (list): List of feature names for convolution features. file_names (list): List of filenames containing mesh data.

get_x_feature(data)[source]

Extracts and concatenates the x_features for each node from the data.

Args:

data (dict): The data dictionary loaded from a .npy file.

Returns:

tensor: The concatenated x_features for each node.

get_mesh_feature(data)[source]

Extracts and concatenates the mesh_features from the data.

Args:

data (dict): The data dictionary loaded from a .npy file.

Returns:

tensor: The concatenated mesh_features.

get_conv_feature(data)[source]

Extracts and concatenates the conv_features from the data.

Args:

data (dict): The data dictionary loaded from a .npy file.

Returns:

tensor: The concatenated conv_features.

get_conv_feature_fix(data)[source]

Extracts and concatenates the conv_features from the data.

Args:

data (dict): The data dictionary loaded from a .npy file.

Returns:

tensor: The concatenated conv_features.

class MeshData(x: Tensor | None = None, edge_index: Tensor | None = None, edge_attr: Tensor | None = None, y: Tensor | int | float | None = None, pos: Tensor | None = None, time: Tensor | None = None, **kwargs)[source]

Bases: Data

Custom PyTorch Data object designed to handle mesh data features.P

This class is intended to be used as the base class of data samples returned by the MeshDataset.

MeshLoader(dataset, batch_size=10, shuffle=True)[source]
normalise(data)[source]

Normalizes the mesh and convolution features of a given MeshData object.

Args:

data (MeshData): The MeshData object containing features to normalize.

Returns:

MeshData: The MeshData object with normalized features.

Module contents