# This file is not written by the author of the project.
# The purose of this file is for comparison with the MRN model.
# The impelemented DeformGAT class is from M2N paper:
# https://arxiv.org/abs/2204.11188
# The original code is from: https://github.com/erizmr/M2N. However,
# this is a private repo belongs to https://github.com/erizmr, So the
# marker of this project may need to contact the original author for
# original code base.
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
cur_dir = os.path.dirname(__file__)
sys.path.append(cur_dir)
from extractor import ( # noqa: E402
GlobalFeatExtractor,
LocalFeatExtractor,
)
from gatdeformer import DeformGAT # noqa: E402
__all__ = ["M2NAtten"]
[docs]
class M2NAtten(torch.nn.Module):
def __init__(self, gfe_in_c=1, lfe_in_c=3, deform_in_c=7, use_drop=False):
super().__init__()
self.gfe_out_c = 16
self.lfe_out_c = 16
self.deformer_in_feat = 7 + self.gfe_out_c + self.lfe_out_c
self.gfe = GlobalFeatExtractor(
in_c=gfe_in_c, out_c=self.gfe_out_c, use_drop=use_drop
)
self.lfe = LocalFeatExtractor(num_feat=lfe_in_c, out=self.lfe_out_c)
self.deformer = NetGATDeform(in_dim=self.deformer_in_feat)
# =======================================================
# Define the self attention layer
self.embed_dim = 39
self.num_heads = 1
self.dense_dim = 64
assert self.embed_dim % self.num_heads == 0
self.atten = nn.MultiheadAttention(
embed_dim=self.embed_dim,
dropout=0.1,
num_heads=self.num_heads,
batch_first=True,
)
self.pre_attn_norm = nn.LayerNorm(self.embed_dim)
self.post_attn_norm = nn.LayerNorm(self.embed_dim)
self.post_attn_dropout = nn.Dropout(0.1)
self.act_dropout = nn.Dropout(0.1)
self.dense_1 = nn.Linear(self.embed_dim, self.dense_dim)
self.dense_2 = nn.Linear(self.dense_dim, self.embed_dim)
self.pre_dense_norm = nn.LayerNorm(self.embed_dim)
self.post_dense_norm = nn.LayerNorm(self.dense_dim)
activation = "GELU"
self.activation = getattr(nn, activation)()
# =======================================================
[docs]
def forward(self, data):
x = data.x # [num_nodes * batch_size, 2]
conv_feat_in = (
data.conv_feat_fix
) # [batch_size, feat, 20, 20], using fixed conv-sample. # noqa
batch_size = conv_feat_in.shape[0]
mesh_feat = data.mesh_feat # [num_nodes * batch_size, 2]
edge_idx = data.edge_index # [num_edges * batch_size, 2]
node_num = data.node_num
conv_feat = self.gfe(conv_feat_in)
conv_feat = conv_feat.repeat_interleave(node_num.reshape(-1), dim=0)
local_feat = self.lfe(mesh_feat, edge_idx)
hidden = torch.cat([x, local_feat, conv_feat], dim=1)
# Reshape back to [batch size, node num, feature dim] for transformer
feat_dim = hidden.shape[-1]
hidden = hidden.reshape(batch_size, -1, feat_dim)
# =======================================================
# A transformer encoder block
residual = hidden
hidden = self.pre_attn_norm(hidden)
# compute self-attention
hidden, atten_scores = self.atten(hidden, hidden, hidden)
hidden = self.post_attn_norm(hidden) # TODO: This seems to be optional
hidden = self.post_attn_dropout(hidden)
hidden = hidden + residual
residual = hidden
hidden = self.pre_dense_norm(hidden)
hidden = self.activation(self.dense_1(hidden))
hidden = self.act_dropout(hidden)
hidden = self.post_dense_norm(hidden) # TODO: This seems to be optional
hidden = self.dense_2(hidden)
hidden = self.post_attn_dropout(hidden)
hidden = hidden + residual
# =======================================================
# Reshape to [batch size * node num, feature dim] for pyG
bs, node_num = hidden.shape[0], hidden.shape[1]
hidden = hidden.reshape(bs * node_num, -1)
x = self.deformer(hidden, edge_idx)
return x