Source code for UM2N.model.M2N_atten

# This file is not written by the author of the project.
# The purose of this file is for comparison with the MRN model.
# The impelemented DeformGAT class is from M2N paper:
# https://arxiv.org/abs/2204.11188
# The original code is from: https://github.com/erizmr/M2N. However,
# this is a private repo belongs to https://github.com/erizmr, So the
# marker of this project may need to contact the original author for
# original code base.

import os
import sys

import torch
import torch.nn as nn
import torch.nn.functional as F

cur_dir = os.path.dirname(__file__)
sys.path.append(cur_dir)
from extractor import (  # noqa: E402
    GlobalFeatExtractor,
    LocalFeatExtractor,
)
from gatdeformer import DeformGAT  # noqa: E402

__all__ = ["M2NAtten"]


[docs] class NetGATDeform(torch.nn.Module): def __init__(self, in_dim): super(NetGATDeform, self).__init__() self.lin = torch.nn.Linear(in_dim, 254) self.gat_1 = DeformGAT(256, 508, heads=6) self.gat_2 = DeformGAT(512, 250, heads=6) self.gat_3 = DeformGAT(256, 120, heads=6) self.gat_4 = DeformGAT(128, 20, heads=6)
[docs] def forward(self, data, edge_idx): coords_tensor = data[:, 0:2] lin_1 = self.lin(data) lin_1 = F.selu(lin_1) together_1 = torch.cat([coords_tensor, lin_1], dim=1) out_coord_1, out_feature_1 = self.gat_1(coords_tensor, together_1, edge_idx) together_2 = torch.cat([out_coord_1, coords_tensor, out_feature_1], dim=1) out_coord_2, out_feature_2 = self.gat_2(out_coord_1, together_2, edge_idx) # 下面是第三层gat的准备层了啊。。 together_3 = torch.cat( [out_coord_2, out_coord_1, coords_tensor, out_feature_2], dim=1 ) out_coord_3, out_feature_3 = self.gat_3(out_coord_2, together_3, edge_idx) # 下面是第四层gat的准备层了啊。。 together_4 = torch.cat( [out_coord_3, out_coord_2, out_coord_1, coords_tensor, out_feature_3], dim=1 ) out_coord_4, out_feature_4 = self.gat_4(out_coord_3, together_4, edge_idx) return out_coord_4
[docs] class M2NAtten(torch.nn.Module): def __init__(self, gfe_in_c=1, lfe_in_c=3, deform_in_c=7, use_drop=False): super().__init__() self.gfe_out_c = 16 self.lfe_out_c = 16 self.deformer_in_feat = 7 + self.gfe_out_c + self.lfe_out_c self.gfe = GlobalFeatExtractor( in_c=gfe_in_c, out_c=self.gfe_out_c, use_drop=use_drop ) self.lfe = LocalFeatExtractor(num_feat=lfe_in_c, out=self.lfe_out_c) self.deformer = NetGATDeform(in_dim=self.deformer_in_feat) # ======================================================= # Define the self attention layer self.embed_dim = 39 self.num_heads = 1 self.dense_dim = 64 assert self.embed_dim % self.num_heads == 0 self.atten = nn.MultiheadAttention( embed_dim=self.embed_dim, dropout=0.1, num_heads=self.num_heads, batch_first=True, ) self.pre_attn_norm = nn.LayerNorm(self.embed_dim) self.post_attn_norm = nn.LayerNorm(self.embed_dim) self.post_attn_dropout = nn.Dropout(0.1) self.act_dropout = nn.Dropout(0.1) self.dense_1 = nn.Linear(self.embed_dim, self.dense_dim) self.dense_2 = nn.Linear(self.dense_dim, self.embed_dim) self.pre_dense_norm = nn.LayerNorm(self.embed_dim) self.post_dense_norm = nn.LayerNorm(self.dense_dim) activation = "GELU" self.activation = getattr(nn, activation)() # =======================================================
[docs] def forward(self, data): x = data.x # [num_nodes * batch_size, 2] conv_feat_in = ( data.conv_feat_fix ) # [batch_size, feat, 20, 20], using fixed conv-sample. # noqa batch_size = conv_feat_in.shape[0] mesh_feat = data.mesh_feat # [num_nodes * batch_size, 2] edge_idx = data.edge_index # [num_edges * batch_size, 2] node_num = data.node_num conv_feat = self.gfe(conv_feat_in) conv_feat = conv_feat.repeat_interleave(node_num.reshape(-1), dim=0) local_feat = self.lfe(mesh_feat, edge_idx) hidden = torch.cat([x, local_feat, conv_feat], dim=1) # Reshape back to [batch size, node num, feature dim] for transformer feat_dim = hidden.shape[-1] hidden = hidden.reshape(batch_size, -1, feat_dim) # ======================================================= # A transformer encoder block residual = hidden hidden = self.pre_attn_norm(hidden) # compute self-attention hidden, atten_scores = self.atten(hidden, hidden, hidden) hidden = self.post_attn_norm(hidden) # TODO: This seems to be optional hidden = self.post_attn_dropout(hidden) hidden = hidden + residual residual = hidden hidden = self.pre_dense_norm(hidden) hidden = self.activation(self.dense_1(hidden)) hidden = self.act_dropout(hidden) hidden = self.post_dense_norm(hidden) # TODO: This seems to be optional hidden = self.dense_2(hidden) hidden = self.post_attn_dropout(hidden) hidden = hidden + residual # ======================================================= # Reshape to [batch size * node num, feature dim] for pyG bs, node_num = hidden.shape[0], hidden.shape[1] hidden = hidden.reshape(bs * node_num, -1) x = self.deformer(hidden, edge_idx) return x