# Author: Chunyang Wang
# GitHub Username: acse-cw1722
import os
import firedrake as fd
import matplotlib.pyplot as plt
import movement as mv
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
__all__ = ["check_dataset_tangle", "plot_prediction", "plot_sample"]
[docs]
def check_dataset_tangle(
dataset,
model,
n_elem_x,
n_elem_y,
):
"""
Return the percentage of tangling grid of a mesh in a dataset.
"""
num_tangled = 0
for idx in range(len(dataset)):
mesh = fd.UnitSquareMesh(n_elem_x, n_elem_y)
checker = mv.MeshTanglingChecker(mesh, mode="warn")
check_item = dataset[idx]
out = model(check_item.to(device)).detach().numpy()
mesh.coordinates.dat.data[:, 0] = out[:, 0]
mesh.coordinates.dat.data[:, 1] = out[:, 1]
num_tangled += checker.check()
return num_tangled / len(dataset)
[docs]
def plot_prediction(
data_set, model, prediction_dir, mode, n_elem_x, n_elem_y, loss_fn, savefig=True
):
num_data = len(data_set)
for idx in range(num_data):
val_item = data_set[idx]
plot_sample(
model,
val_item,
prediction_dir,
loss_fn,
n_elem_x,
n_elem_y,
idx,
mode,
savefig,
)
[docs]
def plot_sample(
model,
val_item,
prediction_dir,
loss_fn,
n_elem_x,
n_elem_y,
idx,
mode,
savefig=True,
):
out = model(val_item.to(device))
# calculate the loss
loss = 1000 * loss_fn(out, val_item.y).item()
out = out.detach().numpy()
# construct the mesh
val_mesh = fd.UnitSquareMesh(n_elem_x, n_elem_y)
val_new_mesh = fd.UnitSquareMesh(n_elem_x, n_elem_y)
# init checker
checker = mv.MeshTanglingChecker(val_new_mesh, mode="warn")
# construct the predicted/target mesh
val_mesh.coordinates.dat.data[:] = val_item.y[:]
val_new_mesh.coordinates.dat.data[:] = out[:]
num_tangle = checker.check()
# plot the mesh, tangle/loss info
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(17, 8))
fd.triplot(val_mesh, axes=ax1)
fd.triplot(val_new_mesh, axes=ax2)
ax1.set_title("Target mesh")
ax2.set_title("Predicted mesh")
ax2.text(
0.5,
-0.05,
f"Num Tangle: {num_tangle}",
ha="center",
va="center",
transform=ax2.transAxes,
fontsize=14,
)
fig.text(0.5, 0.01, f"Loss: {loss:.4f}", ha="center", va="center", fontsize=16)
if savefig:
fig.savefig(os.path.join(prediction_dir, f"{mode}_plot_{idx}.png"))