Source code for animate.metric

from collections.abc import Iterable

import firedrake
import firedrake.function as ffunc
import firedrake.functionspace as ffs
import firedrake.mesh as fmesh
import numpy as np
import sympy
import ufl
from firedrake.__future__ import interpolate
from firedrake.petsc import OptionsManager, PETSc
from pyop2 import op2

from .interpolation import clement_interpolant
from .recovery import (
    get_metric_kernel,
    recover_boundary_hessian,
    recover_gradient_l2,
    recover_hessian_clement,
)

__all__ = ["RiemannianMetric", "determine_metric_complexity", "intersect_on_boundary"]


[docs] class RiemannianMetric(ffunc.Function): r""" Class for defining a Riemannian metric over a given mesh. A metric is a symmetric positive-definite field, which conveys how the mesh is to be adapted. If the mesh is of dimension :math:`d` then the metric takes the value of a square :math:`d\times d` matrix at each point. The implementation of metric-based mesh adaptation used in PETSc assumes that the metric is piece-wise linear and continuous, with its degrees of freedom at the mesh vertices. For details, see the PETSc manual entry: https://petsc.org/release/docs/manual/dmplex/#metric-based-mesh-adaptation """ _supported_parameters = ( "dm_plex_metric_target_complexity", "dm_plex_metric_h_min", "dm_plex_metric_h_max", "dm_plex_metric_a_max", "dm_plex_metric_p", "dm_plex_metric_gradation_factor", "dm_plex_metric_hausdorff_number", "dm_plex_metric_boundary_tag", "dm_plex_metric_no_insert", "dm_plex_metric_no_swap", "dm_plex_metric_no_move", "dm_plex_metric_no_surf", "dm_plex_metric_num_iterations", "dm_plex_metric_verbosity", "dm_plex_metric_isotropic", "dm_plex_metric_uniform", "dm_plex_metric_restrict_anisotropy_first", ) @PETSc.Log.EventDecorator() def __init__(self, function_space, *args, **kwargs): r""" :arg function_space: the tensor :class:`~.FunctionSpace`, on which to build this :class:`~.RiemannianMetric`. Alternatively, another :class:`~.Function` may be passed here and its function space will be used to build this :class:`~.Function`. In this case, the function values are copied. If a :class:`~firedrake.mesh.MeshGeometry` is passed here then a tensor :math:`\mathbb P1` space is built on top of it. :kwarg metric_parameters: same as for :func:`set_parameters <set_parameters>`. """ if isinstance(function_space, fmesh.MeshGeometry): function_space = ffs.TensorFunctionSpace(function_space, "CG", 1) self._metric_parameters = {} metric_parameters = kwargs.pop("metric_parameters", {}) super().__init__(function_space, *args, **kwargs) # Check that we have an appropriate tensor P1 function fs = self.function_space() mesh = fs.mesh() tdim = mesh.topological_dimension() if tdim not in (2, 3): raise ValueError(f"Riemannian metric should be 2D or 3D, not {tdim}D.") if isinstance(fs.dof_count, Iterable): raise ValueError("Riemannian metric cannot be built in a mixed space.") self._check_space() rank = len(fs.dof_dset.dim) if rank != 2: raise ValueError( "Riemannian metric should be matrix-valued," f" not rank-{rank} tensor-valued." ) # Stash mesh data plex = mesh.topology_dm.clone() self._mesh = mesh self._plex = plex self._tdim = tdim # Ensure DMPlex coordinates are consistent self._set_plex_coordinates() # Adjust the section entity_dofs = np.zeros(tdim + 1, dtype=np.int32) entity_dofs[0] = tdim**2 plex.setSection(mesh.create_section(entity_dofs)[0]) # Process spatially variable metric parameters self._variable_parameters = { "dm_plex_metric_h_min": firedrake.Constant(1.0e-30), "dm_plex_metric_h_max": firedrake.Constant(1.0e30), "dm_plex_metric_a_max": firedrake.Constant(1.0e5), "dm_plex_metric_boundary_tag": None, } self._variable_parameters_set = False if metric_parameters: self.set_parameters(metric_parameters) def _check_space(self): el = self.function_space().ufl_element() if (el.family(), el.degree()) != ("Lagrange", 1): raise ValueError(f"Riemannian metric should be in P1 space, not '{el}'.") @staticmethod def _collapse_parameters(metric_parameters): """ Account for concise nested dictionary formatting """ if "dm_plex_metric" in metric_parameters: for key, value in metric_parameters["dm_plex_metric"].items(): metric_parameters["_".join(["dm_plex_metric", key])] = value metric_parameters.pop("dm_plex_metric") return metric_parameters def _process_parameters(self, metric_parameters): mp = self._collapse_parameters(metric_parameters.copy()) # Check all parameters for key in mp: if not key.startswith("dm_plex_metric_"): raise ValueError( f"Unsupported metric parameter '{key}'." " Metric parameters must start with the prefix 'dm_plex_metric_'." ) if key not in self._supported_parameters: raise ValueError(f"Unsupported metric parameter '{key}'.") # Spatially varying parameters need to be treated differently vp = {} for key in ("h_min", "h_max", "a_max"): key = f"dm_plex_metric_{key}" value = mp.get(key) if not value: continue if isinstance(value, (firedrake.Constant, ffunc.Function)): vp[key] = value mp.pop(key) self._variable_parameters_set = True else: vp[key] = firedrake.Constant(value) # The boundary_tag parameter does not currently exist in PETSc if "dm_plex_metric_boundary_tag" in mp: self._variable_parameters_set = True vp["dm_plex_metric_boundary_tag"] = mp.pop("dm_plex_metric_boundary_tag") return mp, vp
[docs] def set_parameters(self, metric_parameters=None): r""" Set metric parameter values internally. All options have the prefix `dm_plex_metric_` and are listed below (with prefix dropped for brevity). Note that any parameter which supports :class:`~.Function` values must be in a :math:`\mathbb{P}1` space defined on the same mesh as the metric, i.e., from ``FunctionSpace(mesh, "CG", 1)``. * `target_complexity`: Strictly positive target metric complexity value. No default - **must be set**. * `h_min`: Minimum tolerated metric magnitude, which allows approximate control of minimum element size in the adapted mesh. Supports :class:`~.Constant` and :class:`~.Function` input, as well as :class:`float`. Default: 1.0e-30. * `h_max`: Maximum tolerated metric magnitude, which allows approximate control of maximum element size in the adapted mesh. Supports :class:`~.Constant` and :class:`~.Function` input, as well as :class:`float`. Default: 1.0e+30. * `a_max`: Maximum tolerated metric anisotropy, which allows approximate control of maximum element anisotropy in the adapted mesh. Supports :class:`~.Constant` and :class:`~.Function` input, as well as :class:`float`. Default: 1.0e+05. * `p`: :math:`L^p` normalisation order. Supports ``np.inf`` as well as :class:`float` values from :math:`[0,\infty)`. Default: 1.0. * `gradation_factor`: Maximum ratio by which adjacent edges in the adapted mesh may differ. Default: 1.3. For more detail, see https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options/mmg-remesher-option-hgrad. * `hausdorff_number`: Spatial scale factor for the problem. The default value 0.01 corresponds to an :math:`\mathcal{O}(1)` length scale. A rule of thumb is to scale this value appropriately to the length scale of your problem. For more detail, see https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options/mmg-remesher-option-hausd. * `boundary_tag`: Mesh boundary tag to restrict attention to during boundary-specific metric manipulations. Unset by default, which implies all boundaries are considered. (Note that this parameter does not currently exist in the underlying PETSc implementation.) * `no_insert`: Boolean flag for turning off node insertion and deletion during adaptation. Default: False. * `no_swap`: Boolean flag for turning off edge and face swapping during adaptation. Default: False. * `no_move`: Boolean flag for turning off node movement during adaptation. Default: False. * `no_surf`: Boolean flag for turning off surface modification during adaptation. Default: False. * `num_iterations`: Number of adaptation-repartitioning iterations in the parallel case. Default: 3. For details on the parallel algorithm, see https://inria.hal.science/hal-02386837. * `verbosity`: Verbosity of the mesh adaptation package (-1 = silent, 10 = maximum). Default: -1. For more detail, see https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options/mmg-remesher-option-v. * `isotropic`: Optimisation for isotropic metrics. (Currently unsupported.) * `uniform`: Optimisation for uniform metrics. (Currently unsupported.) * `restrict_anisotropy_first`: Specify that anisotropy should be restricted before normalisation? (Currently unsupported.) :kwarg metric_parameters: parameters as above :type metric_parameters: :class:`dict` with :class:`str` keys and value which may take various types """ metric_parameters = metric_parameters or {} mp, vp = self._process_parameters(metric_parameters) self._metric_parameters.update(mp) self._variable_parameters.update(vp) mp = self._metric_parameters.copy() if mp.get("dm_plex_metric_p") == np.inf: mp["dm_plex_metric_p"] = 1.79769e308 # Pass parameters to PETSc with OptionsManager(mp, "").inserted_options(): self._plex.metricSetFromOptions() if self._plex.metricIsUniform(): raise NotImplementedError( "Uniform metric optimisations are not supported in Firedrake." ) if self._plex.metricIsIsotropic(): raise NotImplementedError( "Isotropic metric optimisations are not supported in Firedrake." ) if self._plex.metricRestrictAnisotropyFirst(): raise NotImplementedError( "Restricting metric anisotropy first is not supported in Firedrake." )
@property def metric_parameters(self): mp = self._metric_parameters.copy() if self._variable_parameters_set: mp.update(self._variable_parameters) return mp def _create_from_array(self, array): bsize = self.dat.cdim size = [self.dat.dataset.total_size * bsize] * 2 comm = PETSc.COMM_SELF return PETSc.Vec().createWithArray(array, size=size, bsize=bsize, comm=comm) @PETSc.Log.EventDecorator() def _set_plex_coordinates(self): """ Ensure that the coordinates of the Firedrake mesh and the underlying DMPlex are consistent. """ entity_dofs = np.zeros(self._tdim + 1, dtype=np.int32) entity_dofs[0] = self._mesh.geometric_dimension() coord_section = self._mesh.create_section(entity_dofs)[0] # NOTE: section doesn't have any fields, but PETSc assumes it to have one coord_dm = self._plex.getCoordinateDM() coord_dm.setSection(coord_section) coords_local = coord_dm.createLocalVec() coords_local.array[:] = np.reshape( self._mesh.coordinates.dat.data_ro_with_halos, coords_local.array.shape ) self._plex.setCoordinatesLocal(coords_local) # --- Methods for creating metrics
[docs] def copy(self, deepcopy=False): """ Copy the metric and any associated parameters. :kwarg deepcopy: If ``True``, the new metric will allocate new space and copy values. If ``False`` (default) then the new metric will share the DoF values. :type deepcopy: :class:`bool` :return: a copy of the metric with the same parameters set :rtype: :class:`~.RiemannianMetric` """ metric = type(self)(super().copy(deepcopy=deepcopy)) metric.set_parameters(self.metric_parameters) return metric
[docs] @PETSc.Log.EventDecorator() def compute_hessian(self, field, method="mixed_L2", **kwargs): """ Recover the Hessian of a scalar field. :arg f: the scalar field whose Hessian we seek to recover :kwarg method: recovery method All other keyword arguments are passed to the chosen recovery routine. In the case of the `'L2'` method, the `target_space` keyword argument is used for the gradient recovery. The target space for the Hessian recovery is inherited from the metric itself. """ if method == "L2": gradient = recover_gradient_l2( field, target_space=kwargs.get("target_space") ) return self.assign(recover_gradient_l2(gradient)) elif method == "mixed_L2": return self.interpolate( self._compute_gradient_and_hessian(field, **kwargs)[1] ) elif method == "Clement": return self.assign(recover_hessian_clement(field, **kwargs)[1]) elif method == "ZZ": raise NotImplementedError( "Zienkiewicz-Zhu recovery not yet implemented." ) # TODO (#130) else: raise ValueError(f"Recovery method '{method}' not recognised.")
[docs] @PETSc.Log.EventDecorator() def compute_boundary_hessian(self, f, method="mixed_L2", **kwargs): """ Recover the Hessian of a scalar field on the domain boundary. :arg f: field to recover over the domain boundary :kwarg method: choose from 'mixed_L2' and 'Clement' """ return self.assign(recover_boundary_hessian(f, method=method, **kwargs))
def _compute_gradient_and_hessian(self, field, solver_parameters=None): mesh = self.function_space().mesh() V = ffs.VectorFunctionSpace(mesh, "CG", 1) W = V * self.function_space() g, H = firedrake.TrialFunctions(W) phi, tau = firedrake.TestFunctions(W) sol = ffunc.Function(W) n = ufl.FacetNormal(mesh) a = ( ufl.inner(tau, H) * ufl.dx + ufl.inner(ufl.div(tau), g) * ufl.dx - ufl.dot(g, ufl.dot(tau, n)) * ufl.ds - ufl.dot(ufl.avg(g), ufl.jump(tau, n)) * ufl.dS + ufl.inner(phi, g) * ufl.dx ) L = ( field * ufl.dot(phi, n) * ufl.ds + ufl.avg(field) * ufl.jump(phi, n) * ufl.dS - field * ufl.div(phi) * ufl.dx ) if solver_parameters is None: solver_parameters = { "mat_type": "aij", "ksp_type": "gmres", "ksp_max_it": 20, "pc_type": "fieldsplit", "pc_fieldsplit_type": "schur", "pc_fieldsplit_0_fields": "1", "pc_fieldsplit_1_fields": "0", "pc_fieldsplit_schur_precondition": "selfp", "fieldsplit_0_ksp_type": "preonly", "fieldsplit_1_ksp_type": "preonly", "fieldsplit_1_pc_type": "gamg", "fieldsplit_1_mg_levels_ksp_max_it": 5, } if firedrake.COMM_WORLD.size == 1: solver_parameters["fieldsplit_0_pc_type"] = "ilu" solver_parameters["fieldsplit_1_mg_levels_pc_type"] = "ilu" else: solver_parameters["fieldsplit_0_pc_type"] = "bjacobi" solver_parameters["fieldsplit_0_sub_ksp_type"] = "preonly" solver_parameters["fieldsplit_0_sub_pc_type"] = "ilu" solver_parameters["fieldsplit_1_mg_levels_pc_type"] = "bjacobi" solver_parameters["fieldsplit_1_mg_levels_sub_ksp_type"] = "preonly" solver_parameters["fieldsplit_1_mg_levels_sub_pc_type"] = "ilu" firedrake.solve(a == L, sol, solver_parameters=solver_parameters) return sol.subfunctions # --- Methods for processing metrics
[docs] @PETSc.Log.EventDecorator() def enforce_spd(self, restrict_sizes=False, restrict_anisotropy=False): """ Enforce that the metric is symmetric positive-definite. :kwarg restrict_sizes: should minimum and maximum metric magnitudes be enforced? :kwarg restrict_anisotropy: should maximum anisotropy be enforced? :return: the :class:`~.RiemannianMetric`, modified in-place. """ kw = { "restrictSizes": restrict_sizes, "restrictAnisotropy": restrict_anisotropy, } if self._variable_parameters_set: kw["restrictSizes"] = False kw["restrictAnisotropy"] = False v = self._create_from_array(self.dat.data_with_halos) det, _ = self._plex.metricDeterminantCreate() self._plex.metricEnforceSPD(v, v, det, **kw) size = np.shape(self.dat.data_with_halos) self.dat.data_with_halos[:] = np.reshape(v.array, size) v.destroy() if self._variable_parameters_set: if restrict_sizes and restrict_anisotropy: return self._enforce_variable_constraints() elif restrict_sizes or restrict_anisotropy: raise NotImplementedError( "Can only currently restrict both sizes and anisotropy." ) return self
# TODO: Implement this on the PETSc side # See https://gitlab.com/petsc/petsc/-/issues/1450 @PETSc.Log.EventDecorator() def _enforce_variable_constraints(self): """ Post-process a metric to enforce minimum and maximum metric magnitudes and maximum anisotropy, any of which may vary spatially. """ mesh = self.function_space().mesh() P1 = firedrake.FunctionSpace(mesh, "CG", 1) def interp(f): r""" Try to apply a Clement interpolant. * `TypeError` indicates something other than a :class:`Function` passed. * `ValueError` indicates the :class:`Function` is not :math:`\mathbb{P}0`. """ try: return clement_interpolant(f, target_space=P1) except TypeError: return ffunc.Function(P1).assign(f) except ValueError: return ffunc.Function(P1).interpolate(f) h_min = interp(self._variable_parameters["dm_plex_metric_h_min"]) h_max = interp(self._variable_parameters["dm_plex_metric_h_max"]) a_max = interp(self._variable_parameters["dm_plex_metric_a_max"]) # Check minimal h_min value is positive and smaller than minimal h_max value _hmin = h_min.vector().gather().min() if _hmin <= 0.0: raise ValueError(f"Encountered non-positive h_min value: {_hmin}.") if h_max.vector().gather().min() < _hmin: raise ValueError( "Minimum h_max value is smaller than minimum h_min value:" f"{h_max.vector().gather().min()} < {_hmin}." ) # Check h_max is always at least h_min dx = ufl.dx(domain=mesh) integral = firedrake.assemble(ufl.conditional(h_max < h_min, 1, 0) * dx) if not np.isclose(integral, 0.0): raise ValueError("Encountered regions where h_max < h_min.") # Check minimal a_max value is close to unity or larger _a_max = a_max.vector().gather().min() if not np.isclose(_a_max, 1.0) and _a_max < 1.0: raise ValueError(f"Encountered a_max value smaller than unity: {_a_max}.") dim = mesh.topological_dimension() boundary_tag = self._variable_parameters.get("dm_plex_metric_boundary_tag") if boundary_tag is None: node_set = self.function_space().node_set else: bc = firedrake.DirichletBC(self.function_space(), 0, boundary_tag) node_set = bc.node_set op2.par_loop( get_metric_kernel("postproc_metric", dim), node_set, self.dat(op2.RW), h_min.dat(op2.READ), h_max.dat(op2.READ), a_max.dat(op2.READ), ) return self
[docs] @PETSc.Log.EventDecorator() def normalise(self, global_factor=None, boundary=False, **kwargs): """ Apply :math:`L^p` normalisation to the metric. :kwarg global_factor: pre-computed global normalisation factor :kwarg boundary: is the normalisation to be done over the boundary? :kwarg restrict_sizes: should minimum and maximum metric magnitudes be enforced? :kwarg restrict_anisotropy: should maximum anisotropy be enforced? :return: the normalised :class:`~.RiemannianMetric`, modified in-place """ kwargs.setdefault("restrict_sizes", True) kwargs.setdefault("restrict_anisotropy", True) d = self._tdim - 1 if boundary else self._tdim p = self.metric_parameters.get("dm_plex_metric_p", 1.0) target = self.metric_parameters.get("dm_plex_metric_target_complexity") if target is None: raise ValueError("dm_plex_metric_target_complexity must be set.") # Enforce that the metric is SPD self.enforce_spd(restrict_sizes=False, restrict_anisotropy=False) # Compute global normalisation factor detM = ufl.det(self) if global_factor is None: dX = (ufl.ds if boundary else ufl.dx)(domain=self._mesh) exponent = 0.5 if np.isinf(p) else (p / (2 * p + d)) integral = firedrake.assemble(pow(detM, exponent) * dX) global_factor = firedrake.Constant(pow(target / integral, 2 / d)) # Normalise the metric if boundary: raise NotImplementedError( "Normalisation on the boundary not yet implemented." ) determinant = 1 if np.isinf(p) else pow(detM, -1 / (2 * p + d)) self.interpolate(global_factor * determinant * self) # Enforce element constraints return self.enforce_spd(**kwargs)
# --- Methods for combining metrics
[docs] @PETSc.Log.EventDecorator() def intersect(self, *metrics): """ Intersect the metric with other metrics. Metric intersection means taking the minimal ellipsoid in the direction of each eigenvector at each point in the domain. :arg metrics: the metrics to be intersected with :return: the intersected :class:`~.RiemannianMetric`, modified in-place """ fs = self.function_space() for metric in metrics: assert isinstance(metric, RiemannianMetric) if fs != metric.function_space(): raise ValueError( "Cannot intersect metrics with different function spaces." ) # Intersect the metrics recursively one at a time if len(metrics) == 0: pass elif len(metrics) == 1: v1 = self._create_from_array(self.dat.data_with_halos) v2 = self._create_from_array(metrics[0].dat.data_ro_with_halos) vout = self._create_from_array(np.zeros_like(self.dat.data_with_halos)) # Compute the intersection on the PETSc level self._plex.metricIntersection2(v1, v2, vout) # Assign to the output of the intersection size = np.shape(self.dat.data_with_halos) self.dat.data_with_halos[:] = np.reshape(vout.array, size) v2.destroy() v1.destroy() vout.destroy() else: self.intersect(*metrics[1:]) return self
[docs] @PETSc.Log.EventDecorator() def average(self, *metrics, weights=None): """ Average the metric with other metrics. :args metrics: the metrics to be averaged with :kwarg weights: list of weights to apply to each metric :return: the averaged :class:`~.RiemannianMetric`, modified in-place """ num_metrics = len(metrics) + 1 if num_metrics == 1: return self if weights is None: weights = np.ones(num_metrics) / num_metrics if len(weights) != num_metrics: raise ValueError( f"Number of weights ({len(weights)}) does not match number of metrics" f" ({num_metrics})." ) self *= weights[0] fs = self.function_space() for i, metric in enumerate(metrics): assert isinstance(metric, RiemannianMetric) if fs != metric.function_space(): raise ValueError( "Cannot average metrics with different function spaces." ) self += weights[i + 1] * metric return self
[docs] def combine(self, *metrics, average: bool = True, **kwargs): """ Combine metrics using either averaging or intersection. :arg metrics: the list of metrics to combine with :kwarg average: toggle between averaging and intersection All other keyword arguments are passed to the relevant method. """ return (self.average if average else self.intersect)(*metrics, **kwargs)
# --- Metric diagnostics
[docs] @PETSc.Log.EventDecorator() def complexity(self, boundary=False): """ Compute the metric complexity - the continuous analogue of the (inherently discrete) mesh vertex count. :kwarg boundary: should the complexity be computed over the domain boundary? :return: the complexity of the :class:`~.RiemannianMetric` """ dX = ufl.ds if boundary else ufl.dx return firedrake.assemble(ufl.sqrt(ufl.det(self)) * dX)
# --- Metric factorisations
[docs] @PETSc.Log.EventDecorator() def compute_eigendecomposition(self, reorder=False): """ Compute the eigenvectors and eigenvalues of a matrix-valued function. :kwarg reorder: should the eigendecomposition be reordered in order of *descending* eigenvalue magnitude? :return: eigenvector :class:`firedrake.function.Function` and eigenvalue :class:`firedrake.function.Function` from the :func:`firedrake.functionspace.TensorFunctionSpace` underpinning the metric """ V_ten = self.function_space() mesh = V_ten.mesh() fe = (V_ten.ufl_element().family(), V_ten.ufl_element().degree()) V_vec = firedrake.VectorFunctionSpace(mesh, *fe) dim = mesh.topological_dimension() evectors, evalues = firedrake.Function(V_ten), firedrake.Function(V_vec) if reorder: name = "get_reordered_eigendecomposition" else: name = "get_eigendecomposition" kernel = get_metric_kernel(name, dim) op2.par_loop( kernel, V_ten.node_set, evectors.dat(op2.RW), evalues.dat(op2.RW), self.dat(op2.READ), ) return evectors, evalues
[docs] @PETSc.Log.EventDecorator() def assemble_eigendecomposition(self, evectors, evalues): """ Assemble a matrix from its eigenvectors and eigenvalues. :arg evectors: eigenvector :class:`firedrake.function.Function` :arg evalues: eigenvalue :class:`firedrake.function.Function` """ V_ten = evectors.function_space() fe_ten = V_ten.ufl_element() if len(V_ten.value_shape) != 2: raise ValueError( "Eigenvector Function should be rank-2," f" not rank-{len(V_ten.value_shape)}." ) V_vec = evalues.function_space() fe_vec = V_vec.ufl_element() if len(V_vec.value_shape) != 1: raise ValueError( "Eigenvalue Function should be rank-1," f" not rank-{len(V_vec.value_shape)}." ) if fe_ten.family() != fe_vec.family(): raise ValueError( "Mismatching finite element families:" f" '{fe_ten.family()}' vs. '{fe_vec.family()}'." ) if fe_ten.degree() != fe_vec.degree(): raise ValueError( "Mismatching finite element space degrees:" f" {fe_ten.degree()} vs. {fe_vec.degree()}." ) dim = V_ten.mesh().topological_dimension() op2.par_loop( get_metric_kernel("set_eigendecomposition", dim), V_ten.node_set, self.dat(op2.RW), evectors.dat(op2.READ), evalues.dat(op2.READ), ) return self
[docs] @PETSc.Log.EventDecorator() def density_and_quotients(self, reorder=False): r""" Extract the density and anisotropy quotients from a metric. By symmetry, Riemannian metrics admit an orthogonal eigendecomposition, .. math:: \underline{\mathbf M}(\mathbf x) = \underline{\mathbf V}(\mathbf x)\: \underline{\boldsymbol\Lambda}(\mathbf x)\: \underline{\mathbf V}(\mathbf x)^T, at each point :math:`\mathbf x\in\Omega`, where :math:`\underline{\mathbf V}` and :math:`\underline{\boldsymbol\Sigma}` are matrices holding the eigenvectors and eigenvalues, respectively. By positive-definiteness, entries of :math:`\underline{\boldsymbol\Lambda}` are all positive. An alternative decomposition, .. math:: \underline{\mathbf M}(\mathbf x) = d(\mathbf x)^\frac2n \underline{\mathbf V}(\mathbf x)\: \underline{\mathbf R}(\mathbf x)^{-\frac2n} \underline{\mathbf V}(\mathbf x)^T can also be deduced, in terms of the `metric density` and `anisotropy quotients`, .. math:: d = \prod_{i=1}^n h_i,\qquad r_i = h_i^n d,\qquad \forall i=1:n, where :math:`h_i := \frac1{\sqrt{\lambda_i}}`. :kwarg reorder: should the eigendecomposition be reordered? :return: metric density, anisotropy quotients and eigenvector matrix """ fs_ten = self.function_space() mesh = fs_ten.mesh() fe = (fs_ten.ufl_element().family(), fs_ten.ufl_element().degree()) dim = mesh.topological_dimension() evectors, evalues = self.compute_eigendecomposition(reorder=reorder) # Extract density and quotients density = firedrake.Function( firedrake.FunctionSpace(mesh, *fe), name="Metric density" ) density.interpolate(np.prod([ufl.sqrt(e) for e in evalues])) quotients = firedrake.Function( firedrake.VectorFunctionSpace(mesh, *fe), name="Anisotropic quotients" ) quotients.interpolate( ufl.as_vector([density / ufl.sqrt(e) ** dim for e in evalues]) ) return density, quotients, evectors
# --- Goal-oriented metric drivers
[docs] @PETSc.Log.EventDecorator() def compute_isotropic_metric( self, error_indicator, interpolant="Clement", **kwargs ): r""" Compute an isotropic metric from some error indicator. The result is a :math:`\mathbb P1` diagonal tensor field whose entries are projections of the error indicator in modulus. :arg error_indicator: the error indicator :kwarg interpolant: choose from 'Clement' or 'L2' """ mesh = ufl.domain.extract_unique_domain(error_indicator) if mesh != self.function_space().mesh(): raise ValueError("Cannot use an error indicator from a different mesh.") dim = mesh.topological_dimension() # Interpolate P0 indicators into P1 space if interpolant == "Clement": P1_indicator = clement_interpolant(error_indicator) elif interpolant == "L2": P1_indicator = firedrake.project( error_indicator, firedrake.FunctionSpace(mesh, "CG", 1) ) else: raise ValueError(f"Interpolant '{interpolant}' not recognised.") return self.interpolate(abs(P1_indicator) * ufl.Identity(dim))
[docs] def compute_isotropic_dwr_metric( self, error_indicator, convergence_rate=1.0, min_eigenvalue=1.0e-05, interpolant="Clement", ): r""" Compute an isotropic metric from some error indicator using an element-based formulation. The formulation is based on that presented in :cite:`Carpio:2013`. Note that normalisation is implicit in the metric construction and involves the `convergence_rate` parameter, named :math:`alpha` in :cite:`Carpio:2013`. Whilst an element-based formulation is used to derive the metric, the result is projected into :math:`\mathbb P1` space, by default. :arg error_indicator: the error indicator :kwarg convergence_rate: normalisation parameter :kwarg min_eigenvalue: minimum tolerated eigenvalue :kwarg interpolant: choose from 'Clement' or 'L2' """ return self.compute_anisotropic_dwr_metric( error_indicator=error_indicator, convergence_rate=convergence_rate, min_eigenvalue=min_eigenvalue, interpolant=interpolant, )
def _any_inf(self, f): arr = f.vector().gather() return np.isinf(arr).any() or np.isnan(arr).any()
[docs] @PETSc.Log.EventDecorator() def compute_anisotropic_dwr_metric( self, error_indicator, hessian=None, convergence_rate=1.0, min_eigenvalue=1.0e-05, interpolant="Clement", ): r""" Compute an anisotropic metric from some error indicator, given a Hessian field. The formulation used is based on that presented in :cite:`Carpio:2013`. Note that normalisation is implicit in the metric construction and involves the `convergence_rate` parameter, named :math:`alpha` in :cite:`Carpio:2013`. If a Hessian is not provided then an isotropic formulation is used. Whilst an element-based formulation is used to derive the metric, the result is projected into :math:`\mathbb P1` space, by default. :arg error_indicator: the error indicator :kwarg hessian: the Hessian :kwarg convergence_rate: normalisation parameter :kwarg min_eigenvalue: minimum tolerated eigenvalue :kwarg interpolant: choose from 'Clement' or 'L2' """ mp = self.metric_parameters.copy() target_complexity = mp.get("dm_plex_metric_target_complexity") if target_complexity is None: raise ValueError("Target complexity must be set.") mesh = ufl.domain.extract_unique_domain(error_indicator) if mesh != self.function_space().mesh(): raise ValueError("Cannot use an error indicator from a different mesh.") dim = mesh.topological_dimension() if convergence_rate < 1.0: raise ValueError( f"Convergence rate must be at least one, not {convergence_rate}." ) if min_eigenvalue <= 0.0: raise ValueError( f"Minimum eigenvalue must be positive, not {min_eigenvalue}." ) if interpolant not in ("Clement", "L2"): raise ValueError(f"Interpolant '{interpolant}' not recognised.") P0_ten = firedrake.TensorFunctionSpace(mesh, "DG", 0) P0_metric = P0Metric(P0_ten) # Get reference element volume K_hat = 1 / 2 if dim == 2 else 1 / 6 # Get current element volume K = K_hat * abs(ufl.JacobianDeterminant(mesh)) # Get optimal element volume P0 = firedrake.FunctionSpace(mesh, "DG", 0) K_opt = pow(error_indicator, 1 / (convergence_rate + 1)) K_opt_av = ( K_opt / firedrake.assemble(interpolate(K_opt, P0)).vector().gather().sum() ) K_ratio = target_complexity * pow(abs(K_opt_av * K_hat / K), 2 / dim) if self._any_inf(firedrake.assemble(interpolate(K_ratio, P0))): raise ValueError("K_ratio contains non-finite values.") # Interpolate from P1 to P0 # Note that this shouldn't affect symmetric positive-definiteness. if hessian is not None: hessian.enforce_spd(restrict_sizes=False, restrict_anisotropy=False) P0_metric.project(hessian or ufl.Identity(dim)) # Compute stretching factors (in ascending order) evectors, evalues = P0_metric.compute_eigendecomposition(reorder=True) divisor = pow(np.prod(evalues), 1 / dim) modified_evalues = [ abs(ufl.max_value(e, min_eigenvalue) / divisor) for e in evalues ] # Assemble metric with modified eigenvalues evalues.interpolate(K_ratio * ufl.as_vector(modified_evalues)) if self._any_inf(evalues): raise ValueError( "At least one modified stretching factor contains non-finite values." ) P0_metric.assemble_eigendecomposition(evectors, evalues) # Interpolate the metric into the target space fs = self.function_space() metric = RiemannianMetric(fs) if interpolant == "Clement": metric.assign(clement_interpolant(P0_metric, target_space=fs)) else: metric.project(P0_metric) # Rescale to enforce that the target complexity is met # NOTE: We use the L-infinity norm so that the metric is just scaled to the # target metric complexity, as opposed to being redistributed spatially. mp["dm_plex_metric_p"] = np.inf metric.set_parameters(mp) metric.normalise() return self.assign(metric)
[docs] @PETSc.Log.EventDecorator() def compute_weighted_hessian_metric( self, error_indicators, hessians, average=False, interpolant="Clement", ): r""" Compute a vertex-wise anisotropic metric from a list of error indicators, given a list of corresponding Hessian fields. The formulation used is based on that presented in :cite:`Power:2006`. It is assumed that the error indicators have been constructed in the appropriate way. :arg error_indicators: list of error indicators :arg hessians: list of Hessians :kwarg average: should metric components be averaged or intersected? :kwarg interpolant: choose from 'Clement' or 'L2' """ if isinstance(error_indicators, firedrake.Function): error_indicators = [error_indicators] if isinstance(hessians, firedrake.Function): hessians = [hessians] mesh = self.function_space().mesh() P1 = firedrake.FunctionSpace(mesh, "CG", 1) for error_indicator, hessian in zip(error_indicators, hessians): if mesh != error_indicator.function_space().mesh(): raise ValueError("Cannot use an error indicator from a different mesh.") if mesh != hessian.function_space().mesh(): raise ValueError("Cannot use a Hessian from a different mesh.") if not isinstance(hessian, RiemannianMetric): raise TypeError( f"Expected Hessian to be a RiemannianMetric, not {type(hessian)}." ) if interpolant == "Clement": error_indicator = clement_interpolant(error_indicator, target_space=P1) elif interpolant == "L2": error_indicator = firedrake.project(error_indicator, P1) else: raise ValueError(f"Interpolant '{interpolant}' not recognised.") hessian.interpolate(abs(error_indicator) * hessian) return self.combine(*hessians, average=average)
[docs] class P0Metric(RiemannianMetric): r""" Subclass of :class:`~.RiemannianMetric` which allows use of :math:`\mathbb P0` space. """ def _check_space(self): el = self.function_space().ufl_element() if (el.family(), el.degree()) != ("Discontinuous Lagrange", 0): raise ValueError(f"P0 metric should be in P0 space, not '{el}'.")
[docs] @PETSc.Log.EventDecorator() def determine_metric_complexity(H_interior, H_boundary, target, p, **kwargs): """ Solve an algebraic problem to obtain coefficients for the interior and boundary metrics to obtain a given metric complexity. See :cite:Loseille:2010` for details. Note that we use a slightly different formulation here. :arg H_interior: Hessian component from domain interior :arg H_boundary: Hessian component from domain boundary :arg target: target metric complexity :arg p: normalisation order :kwarg H_interior_scaling: optional scaling for interior component :kwarg H_boundary_scaling: optional scaling for boundary component """ d = H_interior.function_space().mesh().topological_dimension() if d not in (2, 3): raise ValueError(f"Spatial dimension {d} not supported.") if np.isinf(p): raise NotImplementedError( "Metric complexity cannot be determined in the L-infinity case." ) g = kwargs.get("H_interior_scaling", firedrake.Constant(1.0)) gbar = kwargs.get("H_boundary_scaling", firedrake.Constant(1.0)) g = pow(g, d / (2 * p + d)) gbar = pow(gbar, d / (2 * p + d - 1)) # Compute coefficients for the algebraic problem a = firedrake.assemble(g * pow(ufl.det(H_interior), p / (2 * p + d)) * ufl.dx) b = firedrake.assemble( gbar * pow(ufl.det(H_boundary), p / (2 * p + d - 1)) * ufl.ds ) # Solve algebraic problem c = sympy.Symbol("c") c = sympy.solve(a * pow(c, d / 2) + b * pow(c, (d - 1) / 2) - target, c) eq = f"{a}*c^{d/2} + {b}*c^{(d-1)/2} = {target}" if len(c) == 0: raise ValueError(f"Could not find any solutions for equation {eq}.") elif len(c) > 1: raise ValueError(f"Could not find a unique solution for equation {eq}.") elif not np.isclose(float(sympy.im(c[0])), 0.0): raise ValueError(f"Could not find any real solutions for equation {eq}.") else: return float(sympy.re(c[0]))
# TODO: Use the intersection functionality in PETSc # See https://gitlab.com/petsc/petsc/-/issues/1452
[docs] @PETSc.Log.EventDecorator() def intersect_on_boundary(*metrics, boundary_tag="on_boundary"): """ Combine a list of metrics by intersection. :arg metrics: the metrics to be combined :kwarg boundary_tag: optional boundary segment physical ID for boundary intersection. Otherwise, the intersection is over the whole boundary. """ n = len(metrics) assert n > 0, "Nothing to combine" fs = metrics[0].function_space() dim = fs.mesh().topological_dimension() if dim not in (2, 3): raise ValueError( f"Spatial dimension {dim} not supported." " Must be either 2 or 3." ) for i, metric in enumerate(metrics): if not isinstance(metric, RiemannianMetric): raise ValueError( f"Metric {i} should be of type 'RiemannianMetric'," f" but is of type '{type(metric)}'." ) fsi = metric.function_space() if fs != fsi: raise ValueError( f"Function space of metric {i} does not match that" f" of metric 0: {fsi} vs. {fs}." ) # Create the metric to be returned intersected_metric = RiemannianMetric(fs) intersected_metric.assign(metrics[0]) # Establish the boundary node set if isinstance(boundary_tag, (list, tuple)) and len(boundary_tag) == 0: raise ValueError( "It is unclear what to do with an empty" f" {type(boundary_tag)} of boundary tags." ) node_set = firedrake.DirichletBC(fs, 0, boundary_tag).node_set # Compute the intersection Mtmp = RiemannianMetric(fs) for metric in metrics[1:]: Mtmp.assign(intersected_metric) op2.par_loop( get_metric_kernel("intersect", dim), node_set, intersected_metric.dat(op2.RW), Mtmp.dat(op2.READ), metric.dat(op2.READ), ) return intersected_metric