Source code for animate.recovery

"""
Driver functions for derivative recovery.
"""

import os

import firedrake
import ufl
from firedrake.__future__ import interpolate
from firedrake.petsc import PETSc
from pyop2 import op2

from .interpolation import clement_interpolant
from .math import construct_basis
from .quality import QualityMeasure, include_dir

__all__ = ["recover_gradient_l2", "recover_hessian_clement", "recover_boundary_hessian"]


[docs] def get_metric_kernel(func: str, dim: int) -> op2.Kernel: """ Helper function to easily pass Eigen kernels for metric utilities to Firedrake via PyOP2. :arg func: function name :arg dim: spatial dimension """ pwd = os.path.abspath(os.path.join(os.path.dirname(__file__), "cxx")) with open(os.path.join(pwd, f"metric{dim}d.cxx"), "r") as code: return op2.Kernel(code.read(), func, cpp=True, include_dirs=include_dir)
[docs] @PETSc.Log.EventDecorator() def recover_gradient_l2(f, target_space=None): r""" Recover the gradient of a scalar or vector field using :math:`L^2` projection. :arg f: the scalar field whose derivatives we seek to recover :kwarg mesh: the underlying mesh :kwarg target_space: the :func:`firedrake.functionspace.FunctionSpace` recovered gradient should live in """ if target_space is None: if not isinstance(f, firedrake.Function): raise ValueError( "If a target space is not provided then the input must be a Function." ) degree = max(1, f.ufl_element().degree() - 1) mesh = f.function_space().mesh() rank = len(f.function_space().value_shape) if rank == 0: target_space = firedrake.VectorFunctionSpace(mesh, "CG", degree) elif rank == 1: target_space = firedrake.TensorFunctionSpace(mesh, "CG", degree) else: raise ValueError( "L2 projection can only be used to compute gradients of scalar or" f" vector Functions, not Functions of rank {rank}." ) return firedrake.project(ufl.grad(f), target_space)
[docs] @PETSc.Log.EventDecorator() def recover_hessian_clement(f): r""" Recover the gradient and Hessian of a scalar field using two applications of Clement interpolation. Note that if the field is of degree 2 then projection will be used to obtain the gradient. If the field is of degree 3 or greater then projection will be used for the Hessian recovery, too. :arg f: the scalar field whose derivatives we seek to recover """ if not isinstance(f, firedrake.Function): raise ValueError( "Clement interpolation can only be used to compute gradients of" " Lagrange Functions of degree > 0." ) family = f.ufl_element().family() degree = f.ufl_element().degree() if family not in ("Lagrange", "Discontinuous Lagrange") or degree == 0: raise ValueError( "Clement interpolation can only be used to compute gradients of" " Lagrange Functions of degree > 0." ) mesh = f.function_space().mesh() # Recover gradient if degree <= 1: V = firedrake.VectorFunctionSpace(mesh, "DG", 0) g = clement_interpolant(firedrake.project(ufl.grad(f), V)) else: V = firedrake.VectorFunctionSpace(mesh, "DG", degree - 1) g = recover_gradient_l2(f, target_space=V) # Recover Hessian if degree <= 2: W = firedrake.TensorFunctionSpace(mesh, "DG", 0) H = clement_interpolant(firedrake.project(ufl.grad(g), W)) else: W = firedrake.TensorFunctionSpace(mesh, "DG", degree - 2) H = recover_gradient_l2(g, target_space=W) return g, H
[docs] @PETSc.Log.EventDecorator() def recover_boundary_hessian(f, method="Clement", target_space=None, **kwargs): """ Recover the Hessian of a scalar field on the domain boundary. :arg f: field to recover over the domain boundary :kwarg method: choose from 'mixed_L2' and 'Clement' :kwarg target_space: the :func:`firedrake.functionspace.TensorFunctionSpace` in which the metric will exist """ mesh = ufl.domain.extract_unique_domain(f) d = mesh.topological_dimension() assert d in (2, 3) # Apply Gram-Schmidt to get tangent vectors n = ufl.FacetNormal(mesh) ns = construct_basis(n) s = ns[1:] ns = ufl.as_vector(ns) # Setup P1 = firedrake.FunctionSpace(mesh, "CG", 1) P1_ten = target_space or firedrake.TensorFunctionSpace(mesh, "CG", 1) assert P1_ten.ufl_element().family() == "Lagrange" assert P1_ten.ufl_element().degree() == 1 boundary_tag = kwargs.get("boundary_tag", "on_boundary") Hs = firedrake.TrialFunction(P1) v = firedrake.TestFunction(P1) l2_proj = [[firedrake.Function(P1) for i in range(d - 1)] for j in range(d - 1)] h = firedrake.assemble( interpolate(ufl.CellDiameter(mesh), firedrake.FunctionSpace(mesh, "DG", 0)) ) h = firedrake.Constant(1 / h.vector().gather().max() ** 2) sp = { "ksp_type": "gmres", "ksp_gmres_restart": 20, "pc_type": "ilu", } if method == "mixed_L2": # Arbitrary value on domain interior a = v * Hs * ufl.dx L = v * h * ufl.dx # Hessian on boundary nullspace = firedrake.VectorSpaceBasis(constant=True) for j, s1 in enumerate(s): for i, s0 in enumerate(s): bcs = [] for tag in mesh.exterior_facets.unique_markers: a_bc = v * Hs * ufl.ds(tag) L_bc = ( -ufl.dot(s0, ufl.grad(v)) * ufl.dot(s1, ufl.grad(f)) * ufl.ds(tag) ) bcs.append(firedrake.EquationBC(a_bc == L_bc, l2_proj[i][j], tag)) firedrake.solve( a == L, l2_proj[i][j], bcs=bcs, nullspace=nullspace, solver_parameters=sp, ) elif method == "Clement": P0_vec = firedrake.VectorFunctionSpace(mesh, "DG", 0) P0_ten = firedrake.TensorFunctionSpace(mesh, "DG", 0) P1_vec = firedrake.VectorFunctionSpace(mesh, "CG", 1) H = firedrake.Function(P1_ten) p0test = firedrake.TestFunction(P0_vec) p1test = firedrake.TestFunction(P1) fa = QualityMeasure(mesh, python=True)("facet_area") source = firedrake.assemble(ufl.inner(p0test, ufl.grad(f)) / fa * ufl.ds) # Recover gradient c = clement_interpolant(source, boundary=True, target_space=P1_vec) # Recover Hessian H += clement_interpolant( firedrake.assemble(interpolate(ufl.grad(c), P0_ten)), boundary=True, target_space=P1_ten, ) # Compute tangential components for j, s1 in enumerate(s): for i, s0 in enumerate(s): l2_proj[i][j] = firedrake.Function(P1) l2_proj[i][j].dat.data_with_halos[:] = firedrake.assemble( p1test * ufl.dot(ufl.dot(s0, H), s1) / fa * ufl.ds ).dat.data_with_halos # TODO: Avoid accessing .dat.data_with_halos (#131) else: raise ValueError( f"Recovery method '{method}' not supported for Hessians on the boundary." ) # Construct tensor field Hbar = firedrake.Function(P1_ten) if d == 2: Hsub = firedrake.assemble(interpolate(abs(l2_proj[0][0]), P1)) H = ufl.as_matrix([[h, 0], [0, Hsub]]) else: fs = firedrake.TensorFunctionSpace(mesh, "CG", 1, shape=(2, 2)) Hsub = firedrake.Function(fs) Hsub.interpolate( ufl.as_matrix( [[l2_proj[0][0], l2_proj[0][1]], [l2_proj[1][0], l2_proj[1][1]]] ) ) # Enforce SPD metric = firedrake.Function(fs) op2.par_loop( get_metric_kernel("metric_from_hessian", 2), fs.node_set, metric.dat(op2.RW), Hsub.dat(op2.READ), ) Hsub.assign(metric) # TODO: Could this be supported using RiemannianMetric.enforce_spd? (#131) # Construct Hessian H = ufl.as_matrix( [[h, 0, 0], [0, Hsub[0, 0], Hsub[0, 1]], [0, Hsub[1, 0], Hsub[1, 1]]] ) # Arbitrary value on domain interior sigma = firedrake.TrialFunction(P1_ten) tau = firedrake.TestFunction(P1_ten) a = ufl.inner(tau, sigma) * ufl.dx L = ufl.inner(tau, h * ufl.Identity(d)) * ufl.dx # Boundary values imposed as in [Loseille et al. 2011] a_bc = ufl.inner(tau, sigma) * ufl.ds L_bc = ufl.inner(tau, ufl.dot(ufl.transpose(ns), ufl.dot(H, ns))) * ufl.ds bcs = firedrake.EquationBC(a_bc == L_bc, Hbar, boundary_tag) firedrake.solve(a == L, Hbar, bcs=bcs, solver_parameters=sp) return Hbar