"""
Drivers for solving adjoint problems on sequences of meshes.
"""
from functools import wraps
import firedrake
import numpy as np
from animate.utility import norm
from firedrake.adjoint import pyadjoint
from firedrake.adjoint_utils.solving import get_solve_blocks
from firedrake.petsc import PETSc
from .function_data import AdjointSolutionData
from .log import pyrint
from .mesh_seq import MeshSeq
from .utility import AttrDict
__all__ = ["AdjointMeshSeq", "annotate_qoi"]
[docs]
def annotate_qoi(get_qoi):
"""
Decorator that ensures QoIs are annotated properly.
To be applied to the :meth:`~.AdjointMeshSeq.get_qoi` method.
:arg get_qoi: a function mapping a dictionary of solution data and an integer index
to a QoI function
"""
@wraps(get_qoi)
def wrap_get_qoi(mesh_seq, i):
qoi = get_qoi(mesh_seq, i)
# Count number of arguments
num_kwargs = 0 if qoi.__defaults__ is None else len(qoi.__defaults__)
num_args = qoi.__code__.co_argcount - num_kwargs
if num_args == 0:
if mesh_seq.qoi_type not in ["end_time", "steady"]:
raise ValueError(
"Expected qoi_type to be 'end_time' or 'steady',"
f" not '{mesh_seq.qoi_type}'."
)
elif num_args == 1:
if mesh_seq.qoi_type != "time_integrated":
raise ValueError(
"Expected qoi_type to be 'time_integrated',"
f" not '{mesh_seq.qoi_type}'."
)
else:
raise ValueError(f"QoI should have 0 or 1 args, not {num_args}.")
@PETSc.Log.EventDecorator("goalie.AdjointMeshSeq.evaluate_qoi")
@wraps(qoi)
def wrap_qoi(*args, **kwargs):
j = firedrake.assemble(qoi(*args, **kwargs))
if pyadjoint.tape.annotate_tape():
j.block_variable.adj_value = 1.0
return j
mesh_seq.qoi = wrap_qoi
return wrap_qoi
return wrap_get_qoi
[docs]
class AdjointMeshSeq(MeshSeq):
"""
An extension of :class:`~.MeshSeq` to account for solving adjoint problems on a
sequence of meshes.
For time-dependent quantities of interest, the solver should access and modify
:attr:`~AdjointMeshSeq.J`, which holds the QoI value.
"""
def __init__(self, time_partition, initial_meshes, **kwargs):
r"""
:arg time_partition: a partition of the temporal domain
:type time_partition: :class:`~.TimePartition`
:arg initial_meshes: a list of meshes corresponding to the subinterval of the
time partition, or a single mesh to use for all subintervals
:type initial_meshes: :class:`list` or :class:`~.MeshGeometry`
:kwarg get_function_spaces: a function as described in
:meth:`~.MeshSeq.get_function_spaces`
:kwarg get_initial_condition: a function as described in
:meth:`~.MeshSeq.get_initial_condition`
:kwarg get_solver: a function as described in :meth:`~.MeshSeq.get_solver`
:kwarg get_qoi: a function as described in :meth:`~.AdjointMeshSeq.get_qoi`
"""
self.qoi_type = kwargs.pop("qoi_type")
if self.qoi_type not in ["end_time", "time_integrated", "steady"]:
raise ValueError(
f"QoI type '{self.qoi_type}' not recognised."
" Choose from 'end_time', 'time_integrated', or 'steady'."
)
self._get_qoi = kwargs.get("get_qoi")
self.J = 0
super().__init__(time_partition, initial_meshes, **kwargs)
if self.qoi_type == "steady" and not self.steady:
raise ValueError(
"QoI type is set to 'steady' but the time partition is not steady."
)
elif self.qoi_type != "steady" and self.steady:
raise ValueError(
"Time partition is steady but the QoI type is set to"
f" '{self.qoi_type}'."
)
self._controls = None
self.qoi_values = []
@property
@pyadjoint.no_annotations
def initial_condition(self):
return super().initial_condition
[docs]
@annotate_qoi
def get_qoi(self, subinterval):
"""
Get the function for evaluating the QoI, which has either zero or one arguments,
corresponding to either an end time or time integrated quantity of interest,
respectively. If the QoI has an argument then it is for the current time.
Signature for the function to be returned:
```
:arg t: the current time (for time-integrated QoIs)
:type t: :class:`float`
:return: the QoI as a 0-form
:rtype: :class:`ufl.form.Form`
```
:arg solution_map: a dictionary whose keys are the solution field names and
whose values are the corresponding solutions
:type solution_map: :class:`dict` with :class:`str` keys and values and
:class:`firedrake.function.Function` values
:arg subinterval: the subinterval index
:type subinterval: :class:`int`
:returns: the function for obtaining the QoI
:rtype: see docstring above
"""
if self._get_qoi is None:
raise NotImplementedError("'get_qoi' is not implemented.")
return self._get_qoi(self, subinterval)
[docs]
@pyadjoint.no_annotations
@PETSc.Log.EventDecorator()
def get_checkpoints(self, solver_kwargs=None, run_final_subinterval=False):
r"""
Solve forward on the sequence of meshes, extracting checkpoints corresponding
to the starting fields on each subinterval.
The QoI is also evaluated.
:kwarg solver_kwargs: additional keyword arguments to be passed to the solver
:type solver_kwargs: :class:`dict` with :class:`str` keys and values which may
take various types
:kwarg run_final_subinterval: if ``True``, the solver is run on the final
subinterval
:type run_final_subinterval: :class:`bool`
:returns: checkpoints for each subinterval
:rtype: :class:`list` of :class:`firedrake.function.Function`\s
"""
solver_kwargs = solver_kwargs or {}
# In some cases we run over all subintervals to check the QoI that is computed
if run_final_subinterval:
self.J = 0
# Generate the checkpoints as in MeshSeq
checkpoints = super().get_checkpoints(
solver_kwargs=solver_kwargs, run_final_subinterval=run_final_subinterval
)
# Account for end time QoI
if self.qoi_type in ["end_time", "steady"] and run_final_subinterval:
self._reinitialise_fields(checkpoints[-1])
qoi = self.get_qoi(len(self) - 1)
self.J = qoi(**solver_kwargs.get("qoi_kwargs", {}))
return checkpoints
[docs]
@PETSc.Log.EventDecorator()
def get_solve_blocks(self, field, subinterval, has_adj_sol=True):
r"""
Get all blocks of the tape corresponding to solve steps for prognostic solution
field on a given subinterval.
:arg field: name of the prognostic solution field
:type field: :class:`str`
:arg subinterval: subinterval index
:type subinterval: :class:`int`
:kwarg has_adj_sol: if ``True``, only blocks with ``adj_sol`` attributes will be
considered
:type has_adj_sol: :class:`bool`
:returns: list of solve blocks
:rtype: :class:`list` of :class:`pyadjoint.block.Block`\s
"""
tape = pyadjoint.get_working_tape()
if tape is None:
self.warning("Tape does not exist!")
return []
blocks = tape.get_blocks()
if len(blocks) == 0:
self.warning("Tape has no blocks!")
return blocks
# Restrict to solve blocks
solve_blocks = get_solve_blocks()
if len(solve_blocks) == 0:
self.warning("Tape has no solve blocks!")
return solve_blocks
# Select solve blocks whose tags correspond to the field name
solve_blocks = [
block
for block in solve_blocks
if isinstance(block.tag, str) and block.tag.startswith(field)
]
N = len(solve_blocks)
if N == 0:
self.warning(
f"No solve blocks associated with field '{field}'."
" Has ad_block_tag been used correctly?"
)
return solve_blocks
self.debug(
f"Field '{field}' on subinterval {subinterval} has {N} solve blocks."
)
# Check FunctionSpaces are consistent across solve blocks
element = self.function_spaces[field][subinterval].ufl_element()
for block in solve_blocks:
if element != block.function_space.ufl_element():
raise ValueError(
f"Solve block list for field '{field}' contains mismatching"
f" elements: {element} vs. {block.function_space.ufl_element()}."
)
# Check that the number of timesteps does not exceed the number of solve blocks
num_timesteps = self.time_partition.num_timesteps_per_subinterval[subinterval]
if num_timesteps > N:
raise ValueError(
f"Number of timesteps exceeds number of solve blocks for field"
f" '{field}' on subinterval {subinterval}: {num_timesteps} > {N}."
)
# Check the number of timesteps is divisible by the number of solve blocks
ratio = num_timesteps / N
if not np.isclose(np.round(ratio), ratio):
raise ValueError(
"Number of timesteps is not divisible by number of solve blocks for"
f" field '{field}' on subinterval {subinterval}: {num_timesteps} vs."
f" {N}."
)
if not has_adj_sol:
return solve_blocks
# Check that adjoint solutions exist
if all(block.adj_sol is None for block in solve_blocks):
self.warning(
"No block has an adjoint solution. Has the adjoint equation been"
" solved?"
)
# Default adjoint solution to zero, rather than None
for block in solve_blocks:
if block.adj_sol is None:
block.adj_sol = firedrake.Function(
self.function_spaces[field][subinterval], name=field
)
return solve_blocks
def _output(self, field, subinterval, solve_block):
"""
For a given solve block and solution field, get the block's outputs
corresponding to the solution from the current timestep.
:arg field: field of interest
:type field: :class:`str`
:arg subinterval: subinterval index
:type subinterval: :class:`int`
:arg solve_block: taped solve block
:type solve_block: :class:`firedrake.adjoint.blocks.GenericSolveBlock`
:returns: the output
:rtype: :class:`firedrake.function.Function`
"""
# TODO #93: Inconsistent return value - can be None
fs = self.function_spaces[field][subinterval]
# Loop through the solve block's outputs
candidates = []
for out in solve_block._outputs:
# Look for Functions with matching function spaces
if not isinstance(out.output, firedrake.Function):
continue
if out.output.function_space() != fs:
continue
# Look for Functions whose name matches that of the field
# NOTE: Here we assume that the user has set this correctly in their
# get_solver method
if not out.output.name() == field:
continue
# Add to the list of candidates
candidates.append(out)
# Check for existence and uniqueness
if len(candidates) == 1:
return candidates[0]
elif len(candidates) > 1:
raise AttributeError(
"Cannot determine a unique output index for the solution associated"
f" with field '{field}' out of {len(candidates)} candidates."
)
elif not self.steady:
raise AttributeError(
f"Solve block for field '{field}' on subinterval {subinterval} has no"
" outputs."
)
def _dependency(self, field, subinterval, solve_block):
"""
For a given solve block and solution field, get the block's dependency which
corresponds to the solution from the previous timestep.
:arg field: field of interest
:type field: :class:`str`
:arg subinterval: subinterval index
:type subinterval: :class:`int`
:arg solve_block: taped solve block
:type solve_block: :class:`firedrake.adjoint.blocks.GenericSolveBlock`
:returns: the dependency
:rtype: :class:`firedrake.function.Function`
"""
# TODO #93: Inconsistent return value - can be None
if self.field_types[field] == "steady":
return
fs = self.function_spaces[field][subinterval]
# Loop through the solve block's dependencies
candidates = []
for dep in solve_block._dependencies:
# Look for Functions with matching function spaces
if not isinstance(dep.output, firedrake.Function):
continue
if dep.output.function_space() != fs:
continue
# Look for Functions whose name is the lagged version of the field's
# NOTE: Here we assume that the user has set this correctly in their
# get_solver method
if not dep.output.name() == f"{field}_old":
continue
# Add to the list of candidates
candidates.append(dep)
# Check for existence and uniqueness
if len(candidates) == 1:
return candidates[0]
elif len(candidates) > 1:
raise AttributeError(
"Cannot determine a unique dependency index for the lagged solution"
f" associated with field '{field}' out of {len(candidates)} candidates."
)
elif not self.steady:
raise AttributeError(
f"Solve block for field '{field}' on subinterval {subinterval} has no"
" dependencies."
)
def _create_solutions(self):
"""
Create the :class:`~.FunctionData` instance for holding solution data.
"""
self._solutions = AdjointSolutionData(self.time_partition, self.function_spaces)
@PETSc.Log.EventDecorator()
def _solve_adjoint(
self,
solver_kwargs=None,
adj_solver_kwargs=None,
get_adj_values=False,
test_checkpoint_qoi=False,
track_coefficients=False,
):
"""
A generator for solving an adjoint problem on a sequence of subintervals.
As well as the quantity of interest value, solution fields are computed - see
:class:`~.AdjointSolutionData` for more information. The solution data are
yielded at the end of each subinterval, before clearing the tape.
:kwarg solver_kwargs: parameters for the forward solver, as well as any
parameters for the QoI, which should be included as a sub-dictionary with
key 'qoi_kwargs'
:type solver_kwargs: :class:`dict` with :class:`str` keys and values which may
take various types
:kwarg adj_solver_kwargs: parameters for the adjoint solver
:type adj_solver_kwargs: :class:`dict` with :class:`str` keys and values which
may take various types
:kwarg get_adj_values: if ``True``, adjoint actions are also returned at
exported timesteps
:type get_adj_values: :class:`bool`
:kwarg test_checkpoint_qoi: solve over the final subinterval when checkpointing
so that the QoI value can be checked across runs
:kwarg: track_coefficients: if ``True``, coefficients in the variational form
will be stored whenever they change between export times. Only relevant for
goal-oriented error estimation on unsteady problems.
:type track_coefficients: :class:`bool`
:yields: the solution data of the forward and adjoint solves
:ytype: :class:`~.AdjointSolutionData`
"""
# TODO #125: Support get_adj_values in AdjointSolutionData
# TODO #126: Separate out qoi_kwargs
solver_kwargs = solver_kwargs or {}
adj_solver_kwargs = adj_solver_kwargs or {}
tp = self.time_partition
num_subintervals = len(self)
solver = self.solver
qoi_kwargs = solver_kwargs.get("qoi_kwargs", {})
# Reinitialise the solution data object
self._create_solutions()
# Solve forward to get checkpoints and evaluate QoI
checkpoints = self.get_checkpoints(
solver_kwargs=solver_kwargs,
run_final_subinterval=test_checkpoint_qoi,
)
J_chk = float(self.J)
if test_checkpoint_qoi and np.isclose(J_chk, 0.0):
self.warning("Zero QoI. Is it implemented as intended?")
# Reset the QoI to zero
self.J = 0
if get_adj_values:
for field in self.fields:
self.solutions.extract(layout="field")[field]["adj_value"] = []
for i, fs in enumerate(self.function_spaces[field]):
self.solutions.extract(layout="field")[field]["adj_value"].append(
[
firedrake.Cofunction(fs.dual(), name=f"{field}_adj_value")
for j in range(tp.num_exports_per_subinterval[i] - 1)
]
)
@PETSc.Log.EventDecorator("goalie.AdjointMeshSeq.solve_adjoint.evaluate_fwd")
@wraps(solver)
def wrapped_solver(subinterval, initial_condition_map, **kwargs):
"""
Decorator to allow the solver to stash its initial conditions as controls.
:arg subinterval: the subinterval index
:type subinterval: :class:`int`
:arg initial_condition_map: a dictionary of initial conditions, keyed by
field name
:type initial_condition_map: :class:`dict` with :class:`str` keys and
:class:`firedrake.function.Function` values
All keyword arguments are passed to the solver.
"""
copy_map = AttrDict(
{
field: initial_condition.copy(deepcopy=True)
for field, initial_condition in initial_condition_map.items()
}
)
self._controls = list(map(pyadjoint.Control, copy_map.values()))
# Reinitialise fields and assign initial conditions
self._reinitialise_fields(copy_map)
return solver(subinterval, **kwargs)
# Loop over subintervals in reverse
seeds = {}
for i in reversed(range(num_subintervals)):
stride = tp.num_timesteps_per_export[i]
num_exports = tp.num_exports_per_subinterval[i]
# Clear tape and start annotation
if not pyadjoint.annotate_tape():
pyadjoint.continue_annotation()
tape = pyadjoint.get_working_tape()
if tape is not None:
tape.clear_tape()
# Initialise the solver generator
solver_gen = wrapped_solver(i, checkpoints[i], **solver_kwargs)
# Annotate tape on current subinterval.
# If we are using a goal-oriented approach on an unsteady problem, we need
# to keep track of the coefficients in the variational form to detect their
# changes between export times. In that case, we solve the forward problem
# sequentially between each export time and save changing coefficients.
# Otherwise, solve over the entire subinterval in one go.
if track_coefficients:
for j in range(tp.num_exports_per_subinterval[i] - 1):
for _ in range(tp.num_timesteps_per_export[i]):
next(solver_gen)
self._detect_changing_coefficients(j)
else:
for _ in range(tp.num_timesteps_per_subinterval[i]):
next(solver_gen)
pyadjoint.pause_annotation()
# Final solution is used as the initial condition for the next subinterval
checkpoint = {
field: sol[0] if self.field_types[field] == "unsteady" else sol
for field, sol in self.fields.items()
}
# Get seed vector for reverse propagation
if i == num_subintervals - 1:
if self.qoi_type in ["end_time", "steady"]:
pyadjoint.continue_annotation()
qoi = self.get_qoi(i)
self.J = qoi(**qoi_kwargs)
if np.isclose(float(self.J), 0.0):
self.warning("Zero QoI. Is it implemented as intended?")
pyadjoint.pause_annotation()
else:
for field, fs in self.function_spaces.items():
checkpoint[field].block_variable.adj_value = self._transfer(
seeds[field], fs[i]
)
# Update adjoint solver kwargs
for field in self.fields:
for block in self.get_solve_blocks(field, i, has_adj_sol=False):
block.adj_kwargs.update(adj_solver_kwargs)
# Solve adjoint problem
tape = pyadjoint.get_working_tape()
with PETSc.Log.Event("goalie.AdjointMeshSeq.solve_adjoint.evaluate_adj"):
m = pyadjoint.enlisting.Enlist(self._controls)
with pyadjoint.stop_annotating():
with tape.marked_nodes(m):
tape.evaluate_adj(markings=True)
# Loop over prognostic variables
for field, fs in self.function_spaces.items():
# Get solve blocks
solve_blocks = self.get_solve_blocks(field, i)
num_solve_blocks = len(solve_blocks)
if num_solve_blocks == 0:
raise ValueError(
"Looks like no solves were written to tape!"
" Does the solution depend on the initial condition?"
)
if fs[0].ufl_element() != solve_blocks[0].function_space.ufl_element():
raise ValueError(
f"Solve block list for field '{field}' contains mismatching"
f" finite elements: ({fs[0].ufl_element()} vs. "
f" {solve_blocks[0].function_space.ufl_element()})"
)
# Detect whether we have a steady problem
steady = self.steady or num_subintervals == num_solve_blocks == 1
if steady and "adjoint_next" in checkpoint:
checkpoint.pop("adjoint_next")
# Check that there are as many solve blocks as expected
if len(solve_blocks[::stride]) >= num_exports:
self.warning(
"More solve blocks than expected:"
f" ({len(solve_blocks[::stride])} > {num_exports-1})."
)
# Update forward and adjoint solution data based on block dependencies
# and outputs
solutions = self.solutions.extract(layout="field")[field]
for j, block in enumerate(reversed(solve_blocks[::-stride])):
# Current forward solution is determined from outputs
out = self._output(field, i, block)
if out is not None:
solutions.forward[i][j].assign(out.saved_output)
# Current adjoint solution is determined from the adj_sol attribute
if block.adj_sol is not None:
solutions.adjoint[i][j].assign(block.adj_sol)
# Lagged forward solution comes from dependencies
dep = self._dependency(field, i, block)
if not self.steady and dep is not None:
solutions.forward_old[i][j].assign(dep.saved_output)
# Adjoint action also comes from dependencies
if get_adj_values and dep is not None:
solutions.adj_value[i][j].assign(dep.adj_value)
# The adjoint solution at the 'next' timestep is determined from the
# adj_sol attribute of the next solve block
if not steady:
if (j + 1) * stride < num_solve_blocks:
if solve_blocks[(j + 1) * stride].adj_sol is not None:
solutions.adjoint_next[i][j].assign(
solve_blocks[(j + 1) * stride].adj_sol
)
elif (j + 1) * stride > num_solve_blocks:
raise IndexError(
"Cannot extract solve block"
f" {(j + 1) * stride} > {num_solve_blocks}."
)
# The initial timestep of the current subinterval is the 'next' timestep
# after the final timestep of the previous subinterval
if i > 0 and solve_blocks[0].adj_sol is not None:
self._transfer(
solve_blocks[0].adj_sol, solutions.adjoint_next[i - 1][-1]
)
# Check non-zero adjoint solution/value
if np.isclose(norm(solutions.adjoint[i][0]), 0.0):
self.warning(
f"Adjoint solution for field '{field}' on {self.th(i)}"
" subinterval is zero."
)
if get_adj_values and np.isclose(norm(solutions.adj_value[i][0]), 0.0):
self.warning(
f"Adjoint action for field '{field}' on {self.th(i)}"
" subinterval is zero."
)
# Get adjoint action on each subinterval
with pyadjoint.stop_annotating():
for field, control in zip(self.fields, self._controls):
seeds[field] = firedrake.Cofunction(
self.function_spaces[field][i].dual()
)
if control.block_variable.adj_value is not None:
seeds[field].assign(control.block_variable.adj_value)
if not self.steady and np.isclose(norm(seeds[field]), 0.0):
self.warning(
f"Adjoint action for field '{field}' on {self.th(i)}"
" subinterval is zero."
)
yield self.solutions
# Clear the tape to reduce the memory footprint
tape.clear_tape()
# Check the QoI value agrees with that due to the checkpointing run
if self.qoi_type == "time_integrated" and test_checkpoint_qoi:
if not np.isclose(J_chk, self.J):
raise ValueError(
"QoI values computed during checkpointing and annotated"
f" run do not match ({J_chk} vs. {self.J})"
)
tape.clear_tape()
[docs]
def solve_adjoint(
self,
solver_kwargs=None,
adj_solver_kwargs=None,
get_adj_values=False,
test_checkpoint_qoi=False,
):
"""
Solve an adjoint problem on a sequence of subintervals.
As well as the quantity of interest value, solution fields are computed - see
:class:`~.AdjointSolutionData` for more information.
:kwarg solver_kwargs: parameters for the forward solver, as well as any
parameters for the QoI, which should be included as a sub-dictionary with
key 'qoi_kwargs'
:type solver_kwargs: :class:`dict` with :class:`str` keys and values which may
take various types
:kwarg adj_solver_kwargs: parameters for the adjoint solver
:type adj_solver_kwargs: :class:`dict` with :class:`str` keys and values which
may take various types
:kwarg get_adj_values: if ``True``, adjoint actions are also returned at
exported timesteps
:type get_adj_values: :class:`bool`
:kwarg test_checkpoint_qoi: solve over the final subinterval when checkpointing
so that the QoI value can be checked across runs
:returns: the solution data of the forward and adjoint solves
:rtype: :class:`~.AdjointSolutionData`
"""
# Initialise the adjoint solver generator
adjoint_solver_gen = self._solve_adjoint(
solver_kwargs=solver_kwargs,
adj_solver_kwargs=adj_solver_kwargs,
get_adj_values=get_adj_values,
test_checkpoint_qoi=test_checkpoint_qoi,
)
# Solve the adjoint problem over each subinterval
for _ in range(len(self)):
next(adjoint_solver_gen)
return self.solutions
[docs]
@staticmethod
def th(num):
"""
Convert from cardinal to ordinal.
:arg num: the cardinal number to convert
:type num: :class:`int`
:returns: the corresponding ordinal number
:rtype: :class:`str`
"""
end = int(str(num)[-1])
try:
c = {1: "st", 2: "nd", 3: "rd"}[end]
except KeyError:
c = "th"
return f"{num}{c}"
def _subintervals_not_checked(self):
num_not_checked = len(self.check_convergence[not self.check_convergence])
return self.check_convergence.argsort()[num_not_checked]
[docs]
def check_qoi_convergence(self):
"""
Check for convergence of the fixed point iteration due to the relative
difference in QoI value being smaller than the specified tolerance.
:return: ``True`` if QoI convergence is detected, else ``False``
:rtype: :class:`bool`
"""
if not self.check_convergence.any():
self.info(
"Skipping QoI convergence check because check_convergence contains"
f" False values for indices {self._subintervals_not_checked}."
)
return False
if len(self.qoi_values) >= max(2, self.params.miniter + 1):
qoi_, qoi = self.qoi_values[-2:]
if abs(qoi - qoi_) < self.params.qoi_rtol * abs(qoi_):
pyrint(
f"QoI converged after {self.fp_iteration+1} iterations"
f" under relative tolerance {self.params.qoi_rtol}."
)
return True
return False