Source code for movement.spring

from collections.abc import Iterable

import firedrake
import firedrake.function as ffunc
import numpy as np
import ufl
from firedrake.petsc import PETSc

import movement.solver_parameters as solver_parameters
from movement.mover import PrimeMover

__all__ = ["SpringMover_Lineal", "SpringMover_Torsional", "SpringMover"]


[docs] def SpringMover(*args, method="lineal", **kwargs): """ Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff beams and solving an associated discrete linear elasticity problem. (See :cite:`Farhat:1998` for details.) :arg mesh: the physical mesh to be moved :type mesh: :class:`firedrake.mesh.MeshGeometry` :arg timestep: the timestep length used :type timestep: :class:`float` :kwarg method: flavour of spring-based method to use :type method: :class:`str` """ if method == "lineal": return SpringMover_Lineal(*args, **kwargs) elif method == "torsional": return SpringMover_Torsional(*args, **kwargs) else: raise ValueError(f"Method '{method}' not recognised.")
[docs] class SpringMover_Base(PrimeMover): """ Base class for mesh movers based on spring analogies. """ def __init__(self, mesh, timestep, **kwargs): """ :arg mesh: the physical mesh to be moved :type mesh: :class:`firedrake.mesh.MeshGeometry` :arg timestep: the timestep length used :type timestep: :class:`float` """ if mesh.coordinates.ufl_element().cell != ufl.triangle: raise ValueError( "Spring-based Movers only currently support triangular meshes." ) super().__init__(mesh) assert timestep > 0.0 self.dt = timestep num_vertices = mesh.num_vertices() self._forcing = np.zeros((num_vertices, mesh.topological_dimension())) self.displacement = np.zeros(num_vertices) def _create_function_spaces(self): super()._create_function_spaces() self.HDivTrace = firedrake.FunctionSpace(self.mesh, "HDiv Trace", 0) self.HDivTrace_vec = firedrake.VectorFunctionSpace(self.mesh, "HDiv Trace", 0) def _create_functions(self): super()._create_functions() self._facet_area = ffunc.Function(self.HDivTrace) self._tangents = ffunc.Function(self.HDivTrace_vec) self._angles = ffunc.Function(self.HDivTrace) @property @PETSc.Log.EventDecorator() def facet_areas(self): """ Compute the areas of all facets in the mesh. In 2D, this corresponds to edge lengths. """ if not hasattr(self, "_facet_area_solver"): test = firedrake.TestFunction(self.HDivTrace) trial = firedrake.TrialFunction(self.HDivTrace) A = ufl.FacetArea(self.mesh) a = trial("+") * test("+") * self.dS + trial * test * self.ds L = test("+") * A * self.dS + test * A * self.ds prob = firedrake.LinearVariationalProblem(a, L, self._facet_area) self._facet_area_solver = firedrake.LinearVariationalSolver( prob, solver_parameters=solver_parameters.jacobi, ) self._facet_area_solver.solve() return self._facet_area @property @PETSc.Log.EventDecorator() def tangents(self): """ Compute tangent vectors for all edges in the mesh. """ if not hasattr(self, "_tangents_solver"): test = firedrake.TestFunction(self.HDivTrace_vec) trial = firedrake.TrialFunction(self.HDivTrace_vec) n = ufl.FacetNormal(self.mesh) s = ufl.perp(n) a = ( ufl.inner(trial("+"), test("+")) * self.dS + ufl.inner(trial, test) * self.ds ) L = ufl.inner(test("+"), s("+")) * self.dS + ufl.inner(test, s) * self.ds prob = firedrake.LinearVariationalProblem(a, L, self._tangents) self._tangents_solver = firedrake.LinearVariationalSolver( prob, solver_parameters=solver_parameters.jacobi, ) self._tangents_solver.solve() return self._tangents @property @PETSc.Log.EventDecorator() def angles(self): r""" Compute the argument of each edge in the mesh, i.e. its angle from the :math:`x`-axis in the :math:`x-y` plane. """ t = self.tangents if not hasattr(self, "_angles_solver"): test = firedrake.TestFunction(self.HDivTrace) trial = firedrake.TrialFunction(self.HDivTrace) e0 = np.zeros(self.dim) e0[0] = 1.0 X = ufl.as_vector(e0) a = trial("+") * test("+") * self.dS + trial * test * self.ds L = ( test("+") * ufl.dot(t("+"), X("+")) * self.dS + test * ufl.dot(t, X) * self.ds ) prob = firedrake.LinearVariationalProblem(a, L, self._angles) self._angles_solver = firedrake.LinearVariationalSolver( prob, solver_parameters=solver_parameters.jacobi, ) self._angles_solver.solve() ones = np.ones_like(self._angles.dat.data) self._angles.dat.data[:] = np.maximum( np.minimum(self._angles.dat.data, ones), -ones ) self._angles.dat.data[:] = np.arccos(self._angles.dat.data) return self._angles @PETSc.Log.EventDecorator() def _stiffness_matrix(self): angles = self.angles edge_lengths = self.facet_areas Nv = self.mesh.num_vertices() K = np.zeros((2 * Nv, 2 * Nv)) for e in range(*self.edge_indices): off = self._edge_offset(e) i, j = (self._coordinate_offset(v) for v in self.plex.getCone(e)) length = edge_lengths.dat.data_with_halos[off] angle = angles.dat.data_with_halos[off] c = np.cos(angle) s = np.sin(angle) c2 = c * c / length sc = s * c / length s2 = s * s / length K[2 * i][2 * i] += c2 K[2 * i][2 * i + 1] += sc K[2 * i][2 * j] += -c2 K[2 * i][2 * j + 1] += -sc K[2 * i + 1][2 * i] += sc K[2 * i + 1][2 * i + 1] += s2 K[2 * i + 1][2 * j] += -sc K[2 * i + 1][2 * j + 1] += -s2 K[2 * j][2 * i] += -c2 K[2 * j][2 * i + 1] += -sc K[2 * j][2 * j] += c2 K[2 * j][2 * j + 1] += sc K[2 * j + 1][2 * i] += -sc K[2 * j + 1][2 * i + 1] += -s2 K[2 * j + 1][2 * j] += sc K[2 * j + 1][2 * j + 1] += s2 return K
[docs] @PETSc.Log.EventDecorator() def assemble_stiffness_matrix(self, boundary_conditions=None): """ Enforce that nodes on certain tagged boundaries do not move. :kwarg boundary_conditions: Dirichlet boundary conditions to be enforced :type boundary_conditions: :class:`~.DirichletBC` or :class:`list` thereof :returns: the stiffness matrix with boundary conditions applied :rtype: :class:`numpy.ndarray` """ boundary_conditions = boundary_conditions or firedrake.DirichletBC( self.coord_space, 0, "on_boundary" ) if isinstance(boundary_conditions, firedrake.DirichletBC): boundary_conditions = [boundary_conditions] assert isinstance(boundary_conditions, Iterable) # Loop over each boundary condition provided K = self._stiffness_matrix() for boundary_condition in boundary_conditions: if boundary_condition.function_space() != self.coord_space: raise ValueError( f"Boundary conditions must have {type(self).__name__}.coord_space" " as their function space." ) # Determine boundary subsets for the associated tags bnd = self.mesh.exterior_facets tags = boundary_condition.sub_domain if tags == ("on_boundary",): tags = bnd.unique_markers if not set(tags).issubset(set(bnd.unique_markers)): raise ValueError(f"{tags} contains invalid boundary tags.") subsets = np.array([bnd.subset(tag).indices for tag in tags]).flatten() # Get vertex-based boundary data to be enforced boundary_value = boundary_condition._original_arg if not isinstance(boundary_value, ffunc.Function): boundary_value = ffunc.Function(self.coord_space).assign(boundary_value) boundary_data = boundary_value.dat.data # Loop over boundary edges and enforce the boundary values at their vertices for e in range(*self.edge_indices): if bnd.point2facetnumber[e] not in subsets: continue i, j = (self._coordinate_offset(v) for v in self.plex.getCone(e)) self._forcing[i, :] = boundary_data[i, :] self._forcing[j, :] = boundary_data[j, :] for k in (2 * i, 2 * i + 1, 2 * j, 2 * j + 1): K[k][:] = 0 K[:][k] = 0 K[k][k] = 1 return K
[docs] class SpringMover_Lineal(SpringMover_Base): """ Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff beams and solving an associated discrete linear elasticity problem. We consider the 'lineal' case, as described in :cite:`Farhat:1998`. """
[docs] @PETSc.Log.EventDecorator() def move(self, time, update_boundary_displacement=None, boundary_conditions=None): """ Assemble and solve the lineal spring system and update the coordinates. :arg time: the current time :type time: :class:`float` :kwarg update_boundary_displacement: function that updates the boundary conditions at the current time :type update_boundary_displacement: :class:`~.Callable` with a single argument of :class:`float` type :kwarg boundary_conditions: Dirichlet boundary conditions to be enforced :type boundary_conditions: :class:`~.DirichletBC` or :class:`list` thereof """ if update_boundary_displacement is not None: update_boundary_displacement(time) # Assemble and solve the linear system K = self.assemble_stiffness_matrix(boundary_conditions=boundary_conditions) try: self.displacement = np.linalg.solve(K, self._forcing.flatten()) * self.dt except Exception as conv_err: self._convergence_error(exception=conv_err) # Update mesh coordinates shape = self.mesh.coordinates.dat.data_with_halos.shape self.mesh.coordinates.dat.data_with_halos[:] += self.displacement.reshape(shape) self._update_plex_coordinates() self.volume.interpolate(ufl.CellVolume(self.mesh)) PETSc.Sys.Print( f"{time:.2f}" f" Volume ratio {self.volume_ratio:5.2f}" f" Variation (σ/μ) {self.coefficient_of_variation:8.2e}" f" Displacement {np.linalg.norm(self.displacement):.2f} m" ) if hasattr(self, "tangling_checker"): self.tangling_checker.check()
[docs] class SpringMover_Torsional(SpringMover_Lineal): """ Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff beams and solving an associated discrete linear elasticity problem. We consider the 'torsional' case, as described in :cite:`Farhat:1998`. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) raise NotImplementedError( "Torsional springs not yet implemented." ) # TODO (#36)