from collections.abc import Iterable
import firedrake
import firedrake.function as ffunc
import numpy as np
import ufl
from firedrake.petsc import PETSc
import movement.solver_parameters as solver_parameters
from movement.mover import PrimeMover
__all__ = ["SpringMover_Lineal", "SpringMover_Torsional", "SpringMover"]
[docs]
def SpringMover(*args, method="lineal", **kwargs):
"""
Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff
beams and solving an associated discrete linear elasticity problem. (See
:cite:`Farhat:1998` for details.)
:arg mesh: the physical mesh to be moved
:type mesh: :class:`firedrake.mesh.MeshGeometry`
:arg timestep: the timestep length used
:type timestep: :class:`float`
:kwarg method: flavour of spring-based method to use
:type method: :class:`str`
"""
if method == "lineal":
return SpringMover_Lineal(*args, **kwargs)
elif method == "torsional":
return SpringMover_Torsional(*args, **kwargs)
else:
raise ValueError(f"Method '{method}' not recognised.")
[docs]
class SpringMover_Base(PrimeMover):
"""
Base class for mesh movers based on spring analogies.
"""
def __init__(self, mesh, timestep, **kwargs):
"""
:arg mesh: the physical mesh to be moved
:type mesh: :class:`firedrake.mesh.MeshGeometry`
:arg timestep: the timestep length used
:type timestep: :class:`float`
"""
if mesh.coordinates.ufl_element().cell != ufl.triangle:
raise ValueError(
"Spring-based Movers only currently support triangular meshes."
)
super().__init__(mesh)
assert timestep > 0.0
self.dt = timestep
num_vertices = mesh.num_vertices()
self._forcing = np.zeros((num_vertices, mesh.topological_dimension()))
self.displacement = np.zeros(num_vertices)
def _create_function_spaces(self):
super()._create_function_spaces()
self.HDivTrace = firedrake.FunctionSpace(self.mesh, "HDiv Trace", 0)
self.HDivTrace_vec = firedrake.VectorFunctionSpace(self.mesh, "HDiv Trace", 0)
def _create_functions(self):
super()._create_functions()
self._facet_area = ffunc.Function(self.HDivTrace)
self._tangents = ffunc.Function(self.HDivTrace_vec)
self._angles = ffunc.Function(self.HDivTrace)
@property
@PETSc.Log.EventDecorator()
def facet_areas(self):
"""
Compute the areas of all facets in the mesh.
In 2D, this corresponds to edge lengths.
"""
if not hasattr(self, "_facet_area_solver"):
test = firedrake.TestFunction(self.HDivTrace)
trial = firedrake.TrialFunction(self.HDivTrace)
A = ufl.FacetArea(self.mesh)
a = trial("+") * test("+") * self.dS + trial * test * self.ds
L = test("+") * A * self.dS + test * A * self.ds
prob = firedrake.LinearVariationalProblem(a, L, self._facet_area)
self._facet_area_solver = firedrake.LinearVariationalSolver(
prob,
solver_parameters=solver_parameters.jacobi,
)
self._facet_area_solver.solve()
return self._facet_area
@property
@PETSc.Log.EventDecorator()
def tangents(self):
"""
Compute tangent vectors for all edges in the mesh.
"""
if not hasattr(self, "_tangents_solver"):
test = firedrake.TestFunction(self.HDivTrace_vec)
trial = firedrake.TrialFunction(self.HDivTrace_vec)
n = ufl.FacetNormal(self.mesh)
s = ufl.perp(n)
a = (
ufl.inner(trial("+"), test("+")) * self.dS
+ ufl.inner(trial, test) * self.ds
)
L = ufl.inner(test("+"), s("+")) * self.dS + ufl.inner(test, s) * self.ds
prob = firedrake.LinearVariationalProblem(a, L, self._tangents)
self._tangents_solver = firedrake.LinearVariationalSolver(
prob,
solver_parameters=solver_parameters.jacobi,
)
self._tangents_solver.solve()
return self._tangents
@property
@PETSc.Log.EventDecorator()
def angles(self):
r"""
Compute the argument of each edge in the mesh, i.e. its angle from the
:math:`x`-axis in the :math:`x-y` plane.
"""
t = self.tangents
if not hasattr(self, "_angles_solver"):
test = firedrake.TestFunction(self.HDivTrace)
trial = firedrake.TrialFunction(self.HDivTrace)
e0 = np.zeros(self.dim)
e0[0] = 1.0
X = ufl.as_vector(e0)
a = trial("+") * test("+") * self.dS + trial * test * self.ds
L = (
test("+") * ufl.dot(t("+"), X("+")) * self.dS
+ test * ufl.dot(t, X) * self.ds
)
prob = firedrake.LinearVariationalProblem(a, L, self._angles)
self._angles_solver = firedrake.LinearVariationalSolver(
prob,
solver_parameters=solver_parameters.jacobi,
)
self._angles_solver.solve()
ones = np.ones_like(self._angles.dat.data)
self._angles.dat.data[:] = np.maximum(
np.minimum(self._angles.dat.data, ones), -ones
)
self._angles.dat.data[:] = np.arccos(self._angles.dat.data)
return self._angles
@PETSc.Log.EventDecorator()
def _stiffness_matrix(self):
angles = self.angles
edge_lengths = self.facet_areas
Nv = self.mesh.num_vertices()
K = np.zeros((2 * Nv, 2 * Nv))
for e in range(*self.edge_indices):
off = self._edge_offset(e)
i, j = (self._coordinate_offset(v) for v in self.plex.getCone(e))
length = edge_lengths.dat.data_with_halos[off]
angle = angles.dat.data_with_halos[off]
c = np.cos(angle)
s = np.sin(angle)
c2 = c * c / length
sc = s * c / length
s2 = s * s / length
K[2 * i][2 * i] += c2
K[2 * i][2 * i + 1] += sc
K[2 * i][2 * j] += -c2
K[2 * i][2 * j + 1] += -sc
K[2 * i + 1][2 * i] += sc
K[2 * i + 1][2 * i + 1] += s2
K[2 * i + 1][2 * j] += -sc
K[2 * i + 1][2 * j + 1] += -s2
K[2 * j][2 * i] += -c2
K[2 * j][2 * i + 1] += -sc
K[2 * j][2 * j] += c2
K[2 * j][2 * j + 1] += sc
K[2 * j + 1][2 * i] += -sc
K[2 * j + 1][2 * i + 1] += -s2
K[2 * j + 1][2 * j] += sc
K[2 * j + 1][2 * j + 1] += s2
return K
[docs]
@PETSc.Log.EventDecorator()
def assemble_stiffness_matrix(self, boundary_conditions=None):
"""
Enforce that nodes on certain tagged boundaries do not move.
:kwarg boundary_conditions: Dirichlet boundary conditions to be enforced
:type boundary_conditions: :class:`~.DirichletBC` or :class:`list` thereof
:returns: the stiffness matrix with boundary conditions applied
:rtype: :class:`numpy.ndarray`
"""
boundary_conditions = boundary_conditions or firedrake.DirichletBC(
self.coord_space, 0, "on_boundary"
)
if isinstance(boundary_conditions, firedrake.DirichletBC):
boundary_conditions = [boundary_conditions]
assert isinstance(boundary_conditions, Iterable)
# Loop over each boundary condition provided
K = self._stiffness_matrix()
for boundary_condition in boundary_conditions:
if boundary_condition.function_space() != self.coord_space:
raise ValueError(
f"Boundary conditions must have {type(self).__name__}.coord_space"
" as their function space."
)
# Determine boundary subsets for the associated tags
bnd = self.mesh.exterior_facets
tags = boundary_condition.sub_domain
if tags == ("on_boundary",):
tags = bnd.unique_markers
if not set(tags).issubset(set(bnd.unique_markers)):
raise ValueError(f"{tags} contains invalid boundary tags.")
subsets = np.array([bnd.subset(tag).indices for tag in tags]).flatten()
# Get vertex-based boundary data to be enforced
boundary_value = boundary_condition._original_arg
if not isinstance(boundary_value, ffunc.Function):
boundary_value = ffunc.Function(self.coord_space).assign(boundary_value)
boundary_data = boundary_value.dat.data
# Loop over boundary edges and enforce the boundary values at their vertices
for e in range(*self.edge_indices):
if bnd.point2facetnumber[e] not in subsets:
continue
i, j = (self._coordinate_offset(v) for v in self.plex.getCone(e))
self._forcing[i, :] = boundary_data[i, :]
self._forcing[j, :] = boundary_data[j, :]
for k in (2 * i, 2 * i + 1, 2 * j, 2 * j + 1):
K[k][:] = 0
K[:][k] = 0
K[k][k] = 1
return K
[docs]
class SpringMover_Lineal(SpringMover_Base):
"""
Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff
beams and solving an associated discrete linear elasticity problem.
We consider the 'lineal' case, as described in :cite:`Farhat:1998`.
"""
[docs]
@PETSc.Log.EventDecorator()
def move(self, time, update_boundary_displacement=None, boundary_conditions=None):
"""
Assemble and solve the lineal spring system and update the coordinates.
:arg time: the current time
:type time: :class:`float`
:kwarg update_boundary_displacement: function that updates the boundary
conditions at the current time
:type update_boundary_displacement: :class:`~.Callable` with a single argument
of :class:`float` type
:kwarg boundary_conditions: Dirichlet boundary conditions to be enforced
:type boundary_conditions: :class:`~.DirichletBC` or :class:`list` thereof
"""
if update_boundary_displacement is not None:
update_boundary_displacement(time)
# Assemble and solve the linear system
K = self.assemble_stiffness_matrix(boundary_conditions=boundary_conditions)
try:
self.displacement = np.linalg.solve(K, self._forcing.flatten()) * self.dt
except Exception as conv_err:
self._convergence_error(exception=conv_err)
# Update mesh coordinates
shape = self.mesh.coordinates.dat.data_with_halos.shape
self.mesh.coordinates.dat.data_with_halos[:] += self.displacement.reshape(shape)
self._update_plex_coordinates()
self.volume.interpolate(ufl.CellVolume(self.mesh))
PETSc.Sys.Print(
f"{time:.2f}"
f" Volume ratio {self.volume_ratio:5.2f}"
f" Variation (σ/μ) {self.coefficient_of_variation:8.2e}"
f" Displacement {np.linalg.norm(self.displacement):.2f} m"
)
if hasattr(self, "tangling_checker"):
self.tangling_checker.check()
[docs]
class SpringMover_Torsional(SpringMover_Lineal):
"""
Movement of a ``mesh`` is determined by reinterpreting it as a structure of stiff
beams and solving an associated discrete linear elasticity problem.
We consider the 'torsional' case, as described in :cite:`Farhat:1998`.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
raise NotImplementedError(
"Torsional springs not yet implemented."
) # TODO (#36)