Object-oriented Burgers equation ================================ You may have noticed that the functions :func:`get_form`, :func:`get_solver`, :func:`get_initial_condition` and :func:`get_qoi` all take a :class:`MeshSeq`, :class:`AdjointMeshSeq` or :class:`GoalOrientedMeshSeq` as input and return a function. If this all feels a lot like writing methods for a subclass, that's because this is exactly what we are doing. The constructors for :class:`MeshSeq`, :class:`AdjointMeshSeq` and :class:`GoalOrientedMeshSeq` simply take these functions and adopt them as methods. A more natural way to write the subclass yourself. In the following, we mostly copy the contents from the previous demos and combine the methods into a subclass called :class:`BurgersMeshSeq`. The main difference to note is that :meth:`get_qoi` should get the :func:`annotate_qoi` decorator so that it gets modified internally to account for annotation. :: from firedrake import * from goalie_adjoint import * set_log_level(DEBUG) class BurgersMeshSeq(GoalOrientedMeshSeq): @staticmethod def get_function_spaces(mesh): return {"u": VectorFunctionSpace(mesh, "CG", 2)} def get_solver(self): def solver(index): u, u_ = self.fields["u"] # Define constants R = FunctionSpace(self[index], "R", 0) dt = Function(R).assign(self.time_partition.timesteps[index]) nu = Function(R).assign(0.0001) # Setup variational problem v = TestFunction(u.function_space()) F = ( inner((u - u_) / dt, v) * dx + inner(dot(u, nabla_grad(u)), v) * dx + nu * inner(grad(u), grad(v)) * dx ) # Communicate variational form to mesh_seq self.read_forms({"u": F}) # Time integrate from t_start to t_end t_start, t_end = self.subintervals[index] dt = self.time_partition.timesteps[index] t = t_start qoi = self.get_qoi(index) while t < t_end - 1.0e-05: solve(F == 0, u, ad_block_tag="u") if self.qoi_type == "time_integrated": self.J += qoi(t) yield u_.assign(u) t += dt return solver def get_initial_condition(self): fs = self.function_spaces["u"][0] x, y = SpatialCoordinate(self[0]) return {"u": Function(fs).interpolate(as_vector([sin(pi * x), 0]))} @annotate_qoi def get_qoi(self, i): R = FunctionSpace(self[i], "R", 0) dt = Function(R).assign(self.time_partition.timesteps[i]) def end_time_qoi(): u = self.fields["u"][0] return inner(u, u) * ds(2) def time_integrated_qoi(t): u = self.fields["u"][0] return dt * inner(u, u) * ds(2) if self.qoi_type == "end_time": return end_time_qoi else: return time_integrated_qoi Notice that the :meth:`get_solver` and :meth:`get_qoi_function` methods have been modified to account for both ``"end_time"`` and ``"time_integrated"`` QoIs. We apply exactly the same setup as before, except that the :class:`BurgersMeshSeq` class is used. :: n = 32 meshes = [UnitSquareMesh(n, n, diagonal="left"), UnitSquareMesh(n, n, diagonal="left")] end_time = 0.5 dt = 1 / n num_subintervals = len(meshes) time_partition = TimePartition( end_time, num_subintervals, dt, ["u"], num_timesteps_per_export=2 ) mesh_seq = BurgersMeshSeq(time_partition, meshes, qoi_type="time_integrated") solutions, indicators = mesh_seq.indicate_errors( enrichment_kwargs={"enrichment_method": "h"} ) Plotting this, we find that the results are consistent with those generated previously. :: fig, axes, tcs = plot_indicator_snapshots(indicators, time_partition, "u", levels=50) fig.savefig("burgers-oo_ee.jpg") .. figure:: burgers-oo_ee.jpg :figwidth: 90% :align: center :: fig, axes, tcs = plot_snapshots(solutions, time_partition, "u", "adjoint") fig.savefig("burgers-oo-time_integrated.jpg") .. figure:: burgers-oo-time_integrated.jpg :figwidth: 90% :align: center In the `next demo <./solid_body_rotation.py.html>`__, we move on from Burgers equation to consider a linear advection example with a rotational velocity field. This demo can also be accessed as a `Python script `__.