UM2N.processor package¶
Submodules¶
UM2N.processor.processor module¶
- class MeshProcessor(original_mesh, optimal_mesh, function_space, use_4_edge=True, poly_mesh=False, num_boundary=4, nu=None, feature={'grad_uh': None, 'uh': None}, raw_feature={'hessian_norm': None, 'uh': None}, dist_params={'n_dist': None, 'use_iso': None, 'w': None, 'z': None, 'μ_x': None, 'μ_y': None, 'σ_x': None, 'σ_y': None}, gauss_list=None, swirl_params=None, dur=None, t=None, idx=None)[source]¶
Bases:
object
- MeshProcessor class for pre-processing mesh data, attaching features to
nodes,
and converting them to training data.
Parameters: - original_mesh: The initial mesh. - optimal_mesh: The optimal mesh after adaptation. - function_space: The function space over which the mesh is defined. - use_4_edge: Whether to use four edges for finding boundaries. - feature: Dictionary containing features like ‘uh’, ‘grad_uh’ etc. - raw_feature: Dictionary containing raw features like ‘uh’, ‘hessian_norm
etc.
dist_params: Dictionary containing distribution parameters.
Attributes: - dist_params: Distribution parameters. - mesh: The original mesh. - optimal_mesh: The optimal mesh. - function_space: The function space. - feature: The attached features. - raw_feature: The raw features. - coordinates: The coordinates of the original mesh. - optimal_coordinates: The coordinates of the optimal mesh. - cell_node_list: The list of nodes for each cell. - num_nodes: The number of nodes in each cell.
- get_conv_feat(fix_reso_x=20, fix_reso_y=20)[source]¶
Generate features for convolution. This involves grid spacing and other related features.
- attach_feature()[source]¶
- Attach features to nodes of the mesh. The features to be attached are
specified
in the ‘feature’ attribute.